Differential-difference equations with incommensurable shifts of arguments
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 92-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary-value problems for differential-difference equations with perturbations in shifts of arguments are considered. Necessary and sufficient conditions for the fulfillment of Gårding-type inequalities in algebraic form are obtained. Continuous dependence of solutions of these problems on shifts of arguments is examined.
Keywords: boundary-value problem, differential-difference equation, strong ellipticity, Gårding inequality.
@article{INTO_2021_191_a7,
     author = {E. P. Ivanova},
     title = {Differential-difference equations with incommensurable shifts of arguments},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {92--100},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a7/}
}
TY  - JOUR
AU  - E. P. Ivanova
TI  - Differential-difference equations with incommensurable shifts of arguments
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 92
EP  - 100
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a7/
LA  - ru
ID  - INTO_2021_191_a7
ER  - 
%0 Journal Article
%A E. P. Ivanova
%T Differential-difference equations with incommensurable shifts of arguments
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 92-100
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a7/
%G ru
%F INTO_2021_191_a7
E. P. Ivanova. Differential-difference equations with incommensurable shifts of arguments. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 92-100. http://geodesic.mathdoc.fr/item/INTO_2021_191_a7/

[1] Onanov G. G., Skubachevskii A. L., “Differentsialnye uravneniya s otklonyayuschi-misya argumentami v statsionarnykh zadachakh mekhaniki”, Prikl. mekh., 15:5 (1979), 30–47 | MR

[2] Skubachevskii A. L., “O nekotorykh nelokalnykh ellipticheskikh kraevykh zadachakh”, Differ. uravn., 18:9 (1982), 1590–1599 | MR

[3] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh differentsialno-raznostnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk., 71:5 (431) (2016), 3-–112 | MR | Zbl

[4] Ivanova E. P., “Continuous dependence on translations of the independent variable for solutions of boundary-value problems for differential-difference equations”, J. Math. Sci., 233:6 (2018), 828–852 | DOI | MR | Zbl

[5] Rossovskii L. E., “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, J. Math. Sci., 223:4 (2017), 351–-493 | DOI | MR | Zbl

[6] Skubachevskii A. L., “The first boundary-value problem for strongly elliptic differential difference equations”, J. Differ. Equations., 63:3 (1986), 332–361 | DOI | MR | Zbl

[7] Skubachevskii A. L., Elliptic Functional-Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl

[8] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlin. Anal. Theory Meth. Appl., 32:2 (1998), 261–278 | DOI | MR | Zbl