Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a6, author = {V. G. Zvyagin and M. V. Kaznacheev}, title = {Attractors for an autonomous model of the motion of a nonlinear viscous fluid}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {74--91}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/} }
TY - JOUR AU - V. G. Zvyagin AU - M. V. Kaznacheev TI - Attractors for an autonomous model of the motion of a nonlinear viscous fluid JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 74 EP - 91 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/ LA - ru ID - INTO_2021_191_a6 ER -
%0 Journal Article %A V. G. Zvyagin %A M. V. Kaznacheev %T Attractors for an autonomous model of the motion of a nonlinear viscous fluid %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 74-91 %V 191 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/ %G ru %F INTO_2021_191_a6
V. G. Zvyagin; M. V. Kaznacheev. Attractors for an autonomous model of the motion of a nonlinear viscous fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 74-91. http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/
[1] Vishik M. I., Chepyzhov V. V., “Traektornye attraktory uravnenii matematicheskoi fiziki”, Usp. mat. nauk., 66:4 (400) (2011), 3–102 | MR | Zbl
[2] Vishik M. I., Chepyzhov V. V., “Traektornyi i globalnyi attraktory 3D sistemy Nave—Stoksa”, Mat. zametki., 71:2 (2002), 194–213 | Zbl
[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatonye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[4] Zvyagin V. G., Avdeev N. N., “Primer sistemy, minimalnyi traektornyi attraktor kotoroi ne soderzhit reshenii sistemy”, Mat. zametki., 104:6 (2018), 937–941 | MR | Zbl
[5] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh nachalno-kraevoi zadachi dlya uravneniya dvizheniya vyazkouprugoi zhidkosti”, Dokl. RAN., 380 (3) (2001), 308–311 | Zbl
[6] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave—Stoksa, Editorial URSS, M., 2004
[7] Zvyagin V. G., Kondratev S. K., “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Mat. sb., 203:11 (2012), 83–104 | MR | Zbl
[8] Zvyagin V. G., Kondratev S. K., “Attraktory uravnenii nenyutonovskoi gidrodinamiki”, Usp. mat. nauk., 69:5 (419) (2014), 81–156 | MR | Zbl
[9] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave—Stoksa”, Zap. nauch. semin. LOMI., 27 (1972), 91–114
[10] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave—Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, Usp. mat. nauk., 42:6 (1987), 25–60 | MR | Zbl
[11] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR
[12] Temam R., Uravnenie Nave—Stoksa. Teoriya i chislennyi analiz, Mir, M., 1971
[13] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[14] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris. Ser. I., 321 (1995), 1309–-1314 | MR | Zbl
[15] Sell G., “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differ. Equations., 8:1 (1996), 1–3 | DOI | MR
[16] Sell G. R., You Y., Dynamics of Evolutionary Equations, Springer-Verlag, New York, 1998 | MR
[17] Simon J., “Compact sets in $L_p(0,T;B)$”, Ann. Mat. Pura Appl. Ser. IV., 146 (1987), 65–96 | DOI | MR | Zbl
[18] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988 | MR | Zbl
[19] Vorotnikov D. A., “Asymptotic behaviour of the non-autonomous 3D Navier–Stokes problem with coercive force”, J. Differ. Equations., 251 (2011), 2209–2225 | DOI | MR | Zbl
[20] Vorotnikov D. A., Zvyagin V. G., “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10 (2008), 19–44 | DOI | MR | Zbl
[21] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-automous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325 (2007), 438–458 | DOI | MR | Zbl
[22] Zvyagin V. G., Kondratyev S. K., “Approximating topological approach to the existence of attractors in fluid mechanics”, J. Fixed Point Theory Appl., 13 (2013), 359–395 | DOI | MR | Zbl
[23] Zvyagin V. G., Vorotnikov D. A., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, de Gruyter, Berlin–New York, 2008 | MR | Zbl