Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a6, author = {V. G. Zvyagin and M. V. Kaznacheev}, title = {Attractors for an autonomous model of the motion of a nonlinear viscous fluid}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {74--91}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/} }
TY - JOUR AU - V. G. Zvyagin AU - M. V. Kaznacheev TI - Attractors for an autonomous model of the motion of a nonlinear viscous fluid JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 74 EP - 91 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/ LA - ru ID - INTO_2021_191_a6 ER -
%0 Journal Article %A V. G. Zvyagin %A M. V. Kaznacheev %T Attractors for an autonomous model of the motion of a nonlinear viscous fluid %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 74-91 %V 191 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/ %G ru %F INTO_2021_191_a6
V. G. Zvyagin; M. V. Kaznacheev. Attractors for an autonomous model of the motion of a nonlinear viscous fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 74-91. http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/