Attractors for an autonomous model of the motion of a nonlinear viscous fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 74-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the limit behavior of weak solutions of an autonomous model of motions of a nonlinear viscous fluid, in the case where the time tends to infinity. Namely, for solutions of the model considered, the existence of weak solutions on the positive semiaxis is proved, the corresponding trajectory space the model is introduced, and the existence of the minimal trajectory attractor and the global attractor in the phase space is proved. Thus, it turns out that any initial state of the system approaches to the global attractor.
Keywords: attractor, trajectory space, nonlinear viscous fluid, weak solution.
@article{INTO_2021_191_a6,
     author = {V. G. Zvyagin and M. V. Kaznacheev},
     title = {Attractors for an autonomous model of the motion of a nonlinear viscous fluid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--91},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - M. V. Kaznacheev
TI  - Attractors for an autonomous model of the motion of a nonlinear viscous fluid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 74
EP  - 91
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/
LA  - ru
ID  - INTO_2021_191_a6
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A M. V. Kaznacheev
%T Attractors for an autonomous model of the motion of a nonlinear viscous fluid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 74-91
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/
%G ru
%F INTO_2021_191_a6
V. G. Zvyagin; M. V. Kaznacheev. Attractors for an autonomous model of the motion of a nonlinear viscous fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 74-91. http://geodesic.mathdoc.fr/item/INTO_2021_191_a6/

[1] Vishik M. I., Chepyzhov V. V., “Traektornye attraktory uravnenii matematicheskoi fiziki”, Usp. mat. nauk., 66:4 (400) (2011), 3–102 | MR | Zbl

[2] Vishik M. I., Chepyzhov V. V., “Traektornyi i globalnyi attraktory 3D sistemy Nave—Stoksa”, Mat. zametki., 71:2 (2002), 194–213 | Zbl

[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatonye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[4] Zvyagin V. G., Avdeev N. N., “Primer sistemy, minimalnyi traektornyi attraktor kotoroi ne soderzhit reshenii sistemy”, Mat. zametki., 104:6 (2018), 937–941 | MR | Zbl

[5] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh nachalno-kraevoi zadachi dlya uravneniya dvizheniya vyazkouprugoi zhidkosti”, Dokl. RAN., 380 (3) (2001), 308–311 | Zbl

[6] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave—Stoksa, Editorial URSS, M., 2004

[7] Zvyagin V. G., Kondratev S. K., “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Mat. sb., 203:11 (2012), 83–104 | MR | Zbl

[8] Zvyagin V. G., Kondratev S. K., “Attraktory uravnenii nenyutonovskoi gidrodinamiki”, Usp. mat. nauk., 69:5 (419) (2014), 81–156 | MR | Zbl

[9] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave—Stoksa”, Zap. nauch. semin. LOMI., 27 (1972), 91–114

[10] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave—Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, Usp. mat. nauk., 42:6 (1987), 25–60 | MR | Zbl

[11] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR

[12] Temam R., Uravnenie Nave—Stoksa. Teoriya i chislennyi analiz, Mir, M., 1971

[13] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[14] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris. Ser. I., 321 (1995), 1309–-1314 | MR | Zbl

[15] Sell G., “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differ. Equations., 8:1 (1996), 1–3 | DOI | MR

[16] Sell G. R., You Y., Dynamics of Evolutionary Equations, Springer-Verlag, New York, 1998 | MR

[17] Simon J., “Compact sets in $L_p(0,T;B)$”, Ann. Mat. Pura Appl. Ser. IV., 146 (1987), 65–96 | DOI | MR | Zbl

[18] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988 | MR | Zbl

[19] Vorotnikov D. A., “Asymptotic behaviour of the non-autonomous 3D Navier–Stokes problem with coercive force”, J. Differ. Equations., 251 (2011), 2209–2225 | DOI | MR | Zbl

[20] Vorotnikov D. A., Zvyagin V. G., “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10 (2008), 19–44 | DOI | MR | Zbl

[21] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-automous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325 (2007), 438–458 | DOI | MR | Zbl

[22] Zvyagin V. G., Kondratyev S. K., “Approximating topological approach to the existence of attractors in fluid mechanics”, J. Fixed Point Theory Appl., 13 (2013), 359–395 | DOI | MR | Zbl

[23] Zvyagin V. G., Vorotnikov D. A., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, de Gruyter, Berlin–New York, 2008 | MR | Zbl