On the well-posedness of Cauchy problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 47-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the well-posedness of Cauchy problems for nonstationary partial differential equations with nonselected highest time derivatives that have degeneration by these derivatives. For this purpose, we introduce the notion of the trace on the initial data hyperplane for distributions with semi-bounded supports, which allows one to establish some properties of the solution that ensure the well-posedness of the problems considered.
Keywords: nonstationary equation, unselected highest derivative, Cauchy problem, nonuniqueness, solution focusing, well-posedness, restriction, trace of distribution.
@article{INTO_2021_191_a5,
     author = {Yu. V. Zasorin},
     title = {On the well-posedness of {Cauchy} problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {47--73},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/}
}
TY  - JOUR
AU  - Yu. V. Zasorin
TI  - On the well-posedness of Cauchy problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 47
EP  - 73
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/
LA  - ru
ID  - INTO_2021_191_a5
ER  - 
%0 Journal Article
%A Yu. V. Zasorin
%T On the well-posedness of Cauchy problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 47-73
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/
%G ru
%F INTO_2021_191_a5
Yu. V. Zasorin. On the well-posedness of Cauchy problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 47-73. http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/

[1] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977 | MR

[2] Bulatov M. V., “O preobrazovanii algebro-differentsialnykh sistem uravnenii”, Zh. vychisl. mat. mat. fiz., 34:3 (1994), 360–372 | MR | Zbl

[3] Bullaf R. i dr., Solitony, Mir, M., 1983

[4] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998

[5] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[6] Zasorin Yu. V., “Asimptoticheskie i polugruppovye svoistva resheniya zadachi Koshi dlya odnogo uravneniya matematicheskoi fiziki”, Vestn. VGU. Ser. fiz. mat., 1 (2005), 171–173 | Zbl

[7] Zasorin Yu. V., “Korrektnaya razreshimost zadach Koshi, svyazannykh s nekotorymi dispersionno-dissipativnymi modelyami”, Vestn. VGU. Ser. fiz. mat., 2 (2006), 204–205 | Zbl

[8] Zasorin Yu. V., “O nekotorykh svoistvakh reshenii dvukh uravnenii, svyazannykh s ionizatsionnymi protsessami v plazme”, Vestn. VGU. Ser. fiz. mat., 2 (2004), 162–166

[9] Zasorin Yu. V., “O reduktsii nekotorykh klassov uravnenii v chastnykh proizvodnykh k uravneniyam s menshim chislom peremennykh i tochnye resheniya”, Sib. mat. zh., 47:4 (2006), 782–797 | MR

[10] Zasorin Yu. V., “O svyazi fundamentalnykh reshenii Koshi nekotorykh klassov nestatsionarnykh uravnenii v chastnykh proizvodnykh s odnomernymi nestatsionarnymi uravneniyami”, Vestn. VGU. Ser. fiz. mat., 2 (2005), 156–159 | Zbl

[11] Zasorin Yu. V., “Tochnye resheniya nekotorykh zadach, opisyvaemykh nestatsionarnymi vyazkimi transzvukovymi uravneniyami”, Zh. vychisl. mat. mat. fiz., 34:10 (1994), 1446–1488 | MR

[12] Zasorin Yu. V., “Fundamentalnye resheniya dlya uravnenii v chastnykh proizvodnykh vysshikh poryadkov: istoricheskii obzor i sovremennye rezultaty”, Vestn. VGU. Ser. fiz. mat., 1 (2003), 123–127

[13] Zasorin Yu. V., Priduschenko M. V., “Trekhmernaya matematicheskaya model perekhodnykh protsesov v plazme”, Mat. model., 17:5 (2005), 41–51 | MR | Zbl

[14] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1967 | MR

[15] Kadomtsev B. B., Kollektivnye yavleniya v plazme, Nauka, M., 1988 | MR

[16] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990

[17] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl

[18] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965

[19] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965