Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a5, author = {Yu. V. Zasorin}, title = {On the well-posedness of {Cauchy} problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {47--73}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/} }
TY - JOUR AU - Yu. V. Zasorin TI - On the well-posedness of Cauchy problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 47 EP - 73 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/ LA - ru ID - INTO_2021_191_a5 ER -
%0 Journal Article %A Yu. V. Zasorin %T On the well-posedness of Cauchy problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 47-73 %V 191 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/ %G ru %F INTO_2021_191_a5
Yu. V. Zasorin. On the well-posedness of Cauchy problems for nonstationary equations with the unselected highest time derivative and the definition of the trace of distribution on the hyperplane of the initial data. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 47-73. http://geodesic.mathdoc.fr/item/INTO_2021_191_a5/
[1] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977 | MR
[2] Bulatov M. V., “O preobrazovanii algebro-differentsialnykh sistem uravnenii”, Zh. vychisl. mat. mat. fiz., 34:3 (1994), 360–372 | MR | Zbl
[3] Bullaf R. i dr., Solitony, Mir, M., 1983
[4] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998
[5] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[6] Zasorin Yu. V., “Asimptoticheskie i polugruppovye svoistva resheniya zadachi Koshi dlya odnogo uravneniya matematicheskoi fiziki”, Vestn. VGU. Ser. fiz. mat., 1 (2005), 171–173 | Zbl
[7] Zasorin Yu. V., “Korrektnaya razreshimost zadach Koshi, svyazannykh s nekotorymi dispersionno-dissipativnymi modelyami”, Vestn. VGU. Ser. fiz. mat., 2 (2006), 204–205 | Zbl
[8] Zasorin Yu. V., “O nekotorykh svoistvakh reshenii dvukh uravnenii, svyazannykh s ionizatsionnymi protsessami v plazme”, Vestn. VGU. Ser. fiz. mat., 2 (2004), 162–166
[9] Zasorin Yu. V., “O reduktsii nekotorykh klassov uravnenii v chastnykh proizvodnykh k uravneniyam s menshim chislom peremennykh i tochnye resheniya”, Sib. mat. zh., 47:4 (2006), 782–797 | MR
[10] Zasorin Yu. V., “O svyazi fundamentalnykh reshenii Koshi nekotorykh klassov nestatsionarnykh uravnenii v chastnykh proizvodnykh s odnomernymi nestatsionarnymi uravneniyami”, Vestn. VGU. Ser. fiz. mat., 2 (2005), 156–159 | Zbl
[11] Zasorin Yu. V., “Tochnye resheniya nekotorykh zadach, opisyvaemykh nestatsionarnymi vyazkimi transzvukovymi uravneniyami”, Zh. vychisl. mat. mat. fiz., 34:10 (1994), 1446–1488 | MR
[12] Zasorin Yu. V., “Fundamentalnye resheniya dlya uravnenii v chastnykh proizvodnykh vysshikh poryadkov: istoricheskii obzor i sovremennye rezultaty”, Vestn. VGU. Ser. fiz. mat., 1 (2003), 123–127
[13] Zasorin Yu. V., Priduschenko M. V., “Trekhmernaya matematicheskaya model perekhodnykh protsesov v plazme”, Mat. model., 17:5 (2005), 41–51 | MR | Zbl
[14] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1967 | MR
[15] Kadomtsev B. B., Kollektivnye yavleniya v plazme, Nauka, M., 1988 | MR
[16] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990
[17] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl
[18] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965
[19] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965