Approximations in the stability problem for linear periodic systems with aftereffect
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 29-37

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic stability of a linear periodic system of differential equations with aftereffect is determined by the location of the spectrum of the infinite-dimensional, compact monodromy operator. Analytical representations of such operators can be obtained only for systems of a special type. In numerical simulations, finite-dimensional approximations of the monodromy operators are used. In this paper, we examine a procedure for approximating a system of differential equations with aftereffect by systems of ordinary differential equations of large dimension proposed by N. N. Krasovskii. Finite-dimensional approximations for monodromy operators are constructed in the Hilbert space of states of a periodic system with aftereffect. We prove that increasing of the dimension of finite-dimensional approximations leads to increasing of the approximation accuracy.
Keywords: system with aftereffect, stability of motion, finite-dimensional approximation.
@article{INTO_2021_191_a3,
     author = {Yu. F. Dolgii and R. I. Shevchenko},
     title = {Approximations in the stability problem for linear periodic systems with aftereffect},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a3/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - R. I. Shevchenko
TI  - Approximations in the stability problem for linear periodic systems with aftereffect
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 29
EP  - 37
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a3/
LA  - ru
ID  - INTO_2021_191_a3
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A R. I. Shevchenko
%T Approximations in the stability problem for linear periodic systems with aftereffect
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 29-37
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a3/
%G ru
%F INTO_2021_191_a3
Yu. F. Dolgii; R. I. Shevchenko. Approximations in the stability problem for linear periodic systems with aftereffect. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 29-37. http://geodesic.mathdoc.fr/item/INTO_2021_191_a3/