Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 16-28

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a complete description of the class of first-order hyperbolic quasilinear equations of divergent type that describe the change in time $t\in\mathbb{R}$ of vector fields $\boldsymbol{v}(\boldsymbol{x},t)$, $\boldsymbol{x}\in\mathbb{R}^3$, which are invariant under translations in time $t\in\mathbb{R}$ and space $\mathbb{R}^3$ and transform covariantly under transformations from the group $\mathbb{O}_3$ of rotations of the space $\mathbb{R}^3$. This class is compared with the class of similar equations, which are hyperbolic in the sense of Friedrichs.
Keywords: quasilinear system, hyperbolicity, translational invariance, vector field, covariance, flux density.
Mots-clés : equation of divergent type
@article{INTO_2021_191_a2,
     author = {Yu. P. Virchenko and A. V. Subbotin},
     title = {Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. V. Subbotin
TI  - Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 16
EP  - 28
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/
LA  - ru
ID  - INTO_2021_191_a2
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. V. Subbotin
%T Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 16-28
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/
%G ru
%F INTO_2021_191_a2
Yu. P. Virchenko; A. V. Subbotin. Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 16-28. http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/