Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 16-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a complete description of the class of first-order hyperbolic quasilinear equations of divergent type that describe the change in time $t\in\mathbb{R}$ of vector fields $\boldsymbol{v}(\boldsymbol{x},t)$, $\boldsymbol{x}\in\mathbb{R}^3$, which are invariant under translations in time $t\in\mathbb{R}$ and space $\mathbb{R}^3$ and transform covariantly under transformations from the group $\mathbb{O}_3$ of rotations of the space $\mathbb{R}^3$. This class is compared with the class of similar equations, which are hyperbolic in the sense of Friedrichs.
Keywords: quasilinear system, hyperbolicity, translational invariance, vector field, covariance, flux density.
Mots-clés : equation of divergent type
@article{INTO_2021_191_a2,
     author = {Yu. P. Virchenko and A. V. Subbotin},
     title = {Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. V. Subbotin
TI  - Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 16
EP  - 28
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/
LA  - ru
ID  - INTO_2021_191_a2
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. V. Subbotin
%T Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 16-28
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/
%G ru
%F INTO_2021_191_a2
Yu. P. Virchenko; A. V. Subbotin. Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 16-28. http://geodesic.mathdoc.fr/item/INTO_2021_191_a2/

[9] Virchenko Yu. P., Pleskanev A. F., “Giperbolicheskie sfericheski simmetrichnye uravneniya pervogo poryadka divergentnogo tipa dlya vektornogo polya”, Nauch. ved. BelGU. Ser. mat. fiz., 51:2 (2019), 280–294

[10] Virchenko Yu. P., Subbotin A. V., “Matematicheskie zadachi konstruirovaniya evolyutsionnykh uravnenii dinamiki kondensirovannykh sred”, Mat. Mezhdunar. nauch. konf. «Differentsialnye uravneniya i smezhnye problemy» (Sterlitamak, 25–29 iyunya 2018 g.), Rits BashGU, Ufa, 2018, 262–264

[11] Virchenko Yu. P., Subbotin A. V., “Uravneniya dinamiki kondensirovannykh sred s lokalnym zakonom sokhraneniya”, Mat. V Mezhdunar. nauch. konf. «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki» (Nalchik, 4–7 dekabrya 2018 g.), IPMA KBNTs RAN, Nalchik, 2018

[12] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004 | MR

[13] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979

[14] Gordienko V. M., “Sistemy Fridrikhsa dlya trekhmernogo volnovogo uravneniya”, Sib. mat. zh., 51:6 (2010), 1282–1297 | MR | Zbl

[15] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[16] Lyubarskii G. Ya., Teoriya grupp i ee primeneniya v fizike, Gosfizmatlit, M., 1958

[17] Mishina A. P., Proskuryakov I. V., Vysshaya algebra, Fizmatlit, M., 1962

[18] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[19] Subbotin A. V., Virchenko Yu. P., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Mat. IV Vseross. nauch.-prakt. konf. «Sovremennye problemy fiziko-matematicheskikh nauk» (Orel, 22–25 noyabrya 2018 g.), OGU im. ni I. S. Turgeneva, Orel, 2018, 83–86

[20] Chirkunov Yu. A., “Sistemy fridrikhsa dlya sistem volnovykh uravnenii i volny sdviga v trekhmernoi uprugoi srede”, Prikl. mekh. tekhn. fiz., 51:6 (2010), 121–132 | MR | Zbl

[21] Majda A., “The existence of multi-dimensional shock fronts”, Mem. Am. Math. Soc., 43:281 (1983), 1–94 | MR