Approximation solution of the McKean system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 157-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional kinetic system of McKean equations with fractional time derivatives is examined. Using an analytical method similar to the generalized Taylor series, we construct an approximation solution and compare the exact and approximate solutions for various values of the parameters.
Keywords: McKean system, approximation solution, fractional Caputo derivative.
@article{INTO_2021_191_a15,
     author = {S. A. Dukhnovskii},
     title = {Approximation solution of the {McKean} system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {157--161},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a15/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - Approximation solution of the McKean system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 157
EP  - 161
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a15/
LA  - ru
ID  - INTO_2021_191_a15
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T Approximation solution of the McKean system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 157-161
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a15/
%G ru
%F INTO_2021_191_a15
S. A. Dukhnovskii. Approximation solution of the McKean system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 157-161. http://geodesic.mathdoc.fr/item/INTO_2021_191_a15/

[1] Dukhnovskii S. A., “Test Penleve i avtomodelnoe reshenie kineticheskoi modeli”, Itogi nauki tekhn. Sovrem. mat. prilozh. Temat. obz., 176 (2020), 91–94 | MR

[2] Dukhnovskii S. A., “Resheniya sistemy Karlemana cherez razlozhenie Penleve”, Vladikavkaz. mat. zh., 22:4 (2020), 58–67 | MR | Zbl

[3] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, Teor. mat. fiz., 170:3 (2012), 481–488

[4] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. RAN., 447:4 (2012), 369–373 | MR | Zbl

[5] Abu Arqub O., El-Ajou A., Momani S., “Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations”, J. Comput. Phys., 293 (2015), 385–399 | DOI | MR | Zbl

[6] Adomian G., “A review of the decompositionmethod in applied mathematics”, J. Math. Anal. Appl., 135:2 (1988), 501–544 | DOI | MR | Zbl

[7] Al Qurashi M. M., Korpinar Z., Baleanu D., Inc M., “A new iterative algorithm on the time-fractional Fisher equation: Residual power series method”, Adv. Mech. Eng., 9:9 (2017), 1–8 | DOI

[8] Dukhnovsky S., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 94:3 (2020) | MR

[9] Euler N., Steeb W.-H., “Painlevé test and discrete Boltzmann equations”, Austr. J. Phys., 42 (1989), 1–10 | DOI | MR

[10] Hariharan G., “Wavelet method for a class of fractional Klein–Gordon equations”, J. Comput. Nonlin. Dynam., 8:2 (2013), 021008 | DOI

[11] He J., Elagan S. K., Li Z. B., “Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus”, Phys. Lett. A., 376:4 (2012), 257–259 | DOI | MR | Zbl

[12] Khuri S. A., “A new approach to Bratu's problem”, Appl. Math. Comput., 147:1 (2004), 131–136 | MR | Zbl

[13] Tchier F., Inc M., Yusuf A., “Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems”, Eur. Phys. J. Plus., 134:250 (2019), 1–18

[14] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, J. Math. Sci., 235:4 (2018), 393–453 | MR

[15] Wazwaz A.-M., “The variational iteration method: a reliable analytic tool for solving linear and nonlinear wave equations”, Comput. Math. Appl., 54:7-8 (2007), 926–932 | DOI | MR | Zbl