Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a15, author = {S. A. Dukhnovskii}, title = {Approximation solution of the {McKean} system}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {157--161}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a15/} }
TY - JOUR AU - S. A. Dukhnovskii TI - Approximation solution of the McKean system JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 157 EP - 161 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a15/ LA - ru ID - INTO_2021_191_a15 ER -
S. A. Dukhnovskii. Approximation solution of the McKean system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 157-161. http://geodesic.mathdoc.fr/item/INTO_2021_191_a15/
[1] Dukhnovskii S. A., “Test Penleve i avtomodelnoe reshenie kineticheskoi modeli”, Itogi nauki tekhn. Sovrem. mat. prilozh. Temat. obz., 176 (2020), 91–94 | MR
[2] Dukhnovskii S. A., “Resheniya sistemy Karlemana cherez razlozhenie Penleve”, Vladikavkaz. mat. zh., 22:4 (2020), 58–67 | MR | Zbl
[3] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, Teor. mat. fiz., 170:3 (2012), 481–488
[4] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. RAN., 447:4 (2012), 369–373 | MR | Zbl
[5] Abu Arqub O., El-Ajou A., Momani S., “Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations”, J. Comput. Phys., 293 (2015), 385–399 | DOI | MR | Zbl
[6] Adomian G., “A review of the decompositionmethod in applied mathematics”, J. Math. Anal. Appl., 135:2 (1988), 501–544 | DOI | MR | Zbl
[7] Al Qurashi M. M., Korpinar Z., Baleanu D., Inc M., “A new iterative algorithm on the time-fractional Fisher equation: Residual power series method”, Adv. Mech. Eng., 9:9 (2017), 1–8 | DOI
[8] Dukhnovsky S., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 94:3 (2020) | MR
[9] Euler N., Steeb W.-H., “Painlevé test and discrete Boltzmann equations”, Austr. J. Phys., 42 (1989), 1–10 | DOI | MR
[10] Hariharan G., “Wavelet method for a class of fractional Klein–Gordon equations”, J. Comput. Nonlin. Dynam., 8:2 (2013), 021008 | DOI
[11] He J., Elagan S. K., Li Z. B., “Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus”, Phys. Lett. A., 376:4 (2012), 257–259 | DOI | MR | Zbl
[12] Khuri S. A., “A new approach to Bratu's problem”, Appl. Math. Comput., 147:1 (2004), 131–136 | MR | Zbl
[13] Tchier F., Inc M., Yusuf A., “Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems”, Eur. Phys. J. Plus., 134:250 (2019), 1–18
[14] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, J. Math. Sci., 235:4 (2018), 393–453 | MR
[15] Wazwaz A.-M., “The variational iteration method: a reliable analytic tool for solving linear and nonlinear wave equations”, Comput. Math. Appl., 54:7-8 (2007), 926–932 | DOI | MR | Zbl