Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a14, author = {A. R. Rustanov and S. V. Kharitonova}, title = {The {Nijenhuis} tensor of a pseudo-cosymplectic manifold}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {149--156}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/} }
TY - JOUR AU - A. R. Rustanov AU - S. V. Kharitonova TI - The Nijenhuis tensor of a pseudo-cosymplectic manifold JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 149 EP - 156 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/ LA - ru ID - INTO_2021_191_a14 ER -
%0 Journal Article %A A. R. Rustanov %A S. V. Kharitonova %T The Nijenhuis tensor of a pseudo-cosymplectic manifold %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 149-156 %V 191 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/ %G ru %F INTO_2021_191_a14
A. R. Rustanov; S. V. Kharitonova. The Nijenhuis tensor of a pseudo-cosymplectic manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 149-156. http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/
[1] Kirichenko V. F., “Pochti ermitovy mnogoobraziya postoyannogo tipa”, Dokl. AN SSSR., 259:6 (1981), 1293–1297 | MR | Zbl
[2] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geom., 18 (1986), 25–71
[3] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Mat. sb., 193:8 (2002), 71–100 | Zbl
[4] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Odessa, 2013
[5] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR
[6] Rustanov A. R., “Svoistva integriruemosti $NC_{10}$-mnogoobrazii”, Mat. fiz. komp. model., 20:5 (2017), 32–38 | MR
[7] Blair D. E., “Contact manifolds in Riemannian geometry”, Lect. Notes Math., 509 (1976), 1–146 | DOI | MR
[8] Blair D. E., “Riemannian geometry of contact and symplectic manifolds”, Progr. Math., 203 (2002) | MR | Zbl
[9] Capursi M., “Quasi cosymplectic manifolds”, Rev. Roum. Math. Pures Appl., 32:1 (1987), 27–35 | MR | Zbl
[10] Chinea D., “Quasi-K-cosymplectic submersions”, Rend. Circ. Mat. Palermo., 2:33 (1984), 319-–330 | DOI | MR | Zbl
[11] Chinea D., Gonzalez C., “Classification of almost contact metric structures”, Ann. Mat. Pura Appl. (IV)., 5:161 (1990), 15–36 | DOI | MR
[12] Gray A., “Nearly Kähler manifolds”, J. Differ. Geom., 4:4 (1970), 283–309 | MR | Zbl
[13] Sasaki S., Hatakeyama J., “On differentiable manifolds with certain structures which are closely related to almost contact structure. II”, Tohoku Math. J., 13:2 (1961), 281–294 | DOI | MR | Zbl