The Nijenhuis tensor of a pseudo-cosymplectic manifold
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 149-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the Nijenhuis tensor of pseudo-cosymplectic manifolds. The adjoint $G$-structure of an almost contact metric manifold is constructed, the first group of such manifolds is defined. The pseudo-cosymplectic subclass of quasi-cosymplectic manifolds is distinguished and the first group of structure equations is obtained for them. We obtained necessary and sufficient conditions under which a pseudo-cosymplectic manifold is cosymplectic, most precisely cosymplectic, normal, or integrable.
Keywords: almost contact metric structure, Nijenhuis tensor, quasi-cosymplectic structure, pseudo-cosymplectic structure, most precisely cosymplectic structure.
@article{INTO_2021_191_a14,
     author = {A. R. Rustanov and S. V. Kharitonova},
     title = {The {Nijenhuis} tensor of a pseudo-cosymplectic manifold},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {149--156},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/}
}
TY  - JOUR
AU  - A. R. Rustanov
AU  - S. V. Kharitonova
TI  - The Nijenhuis tensor of a pseudo-cosymplectic manifold
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 149
EP  - 156
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/
LA  - ru
ID  - INTO_2021_191_a14
ER  - 
%0 Journal Article
%A A. R. Rustanov
%A S. V. Kharitonova
%T The Nijenhuis tensor of a pseudo-cosymplectic manifold
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 149-156
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/
%G ru
%F INTO_2021_191_a14
A. R. Rustanov; S. V. Kharitonova. The Nijenhuis tensor of a pseudo-cosymplectic manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 149-156. http://geodesic.mathdoc.fr/item/INTO_2021_191_a14/

[1] Kirichenko V. F., “Pochti ermitovy mnogoobraziya postoyannogo tipa”, Dokl. AN SSSR., 259:6 (1981), 1293–1297 | MR | Zbl

[2] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geom., 18 (1986), 25–71

[3] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Mat. sb., 193:8 (2002), 71–100 | Zbl

[4] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Odessa, 2013

[5] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR

[6] Rustanov A. R., “Svoistva integriruemosti $NC_{10}$-mnogoobrazii”, Mat. fiz. komp. model., 20:5 (2017), 32–38 | MR

[7] Blair D. E., “Contact manifolds in Riemannian geometry”, Lect. Notes Math., 509 (1976), 1–146 | DOI | MR

[8] Blair D. E., “Riemannian geometry of contact and symplectic manifolds”, Progr. Math., 203 (2002) | MR | Zbl

[9] Capursi M., “Quasi cosymplectic manifolds”, Rev. Roum. Math. Pures Appl., 32:1 (1987), 27–35 | MR | Zbl

[10] Chinea D., “Quasi-K-cosymplectic submersions”, Rend. Circ. Mat. Palermo., 2:33 (1984), 319-–330 | DOI | MR | Zbl

[11] Chinea D., Gonzalez C., “Classification of almost contact metric structures”, Ann. Mat. Pura Appl. (IV)., 5:161 (1990), 15–36 | DOI | MR

[12] Gray A., “Nearly Kähler manifolds”, J. Differ. Geom., 4:4 (1970), 283–309 | MR | Zbl

[13] Sasaki S., Hatakeyama J., “On differentiable manifolds with certain structures which are closely related to almost contact structure. II”, Tohoku Math. J., 13:2 (1961), 281–294 | DOI | MR | Zbl