Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a13, author = {N. A. Rautian}, title = {Well-posedness of {Volterra} integro-differential equations with singular kernels}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {135--148}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/} }
TY - JOUR AU - N. A. Rautian TI - Well-posedness of Volterra integro-differential equations with singular kernels JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 135 EP - 148 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/ LA - ru ID - INTO_2021_191_a13 ER -
%0 Journal Article %A N. A. Rautian %T Well-posedness of Volterra integro-differential equations with singular kernels %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 135-148 %V 191 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/ %G ru %F INTO_2021_191_a13
N. A. Rautian. Well-posedness of Volterra integro-differential equations with singular kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 135-148. http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/