Well-posedness of Volterra integro-differential equations with singular kernels
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 135-148

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of integro-differential equations with unbounded operator coefficients in a Hilbert space. The principal part of the equations considered is an abstract hyperbolic equation perturbed by terms containing Volterra integral operators with singular kernels. Such integro-differential equations describe, for example, linear viscoelastic phenomena, heat propagation processes in media with memory (the Gurtin–Pipkin equation), averaging problems in perforated media (Darcy's law), etc. We establish conditions for the existence and uniqueness of strong and generalized solutions to initial-boundary-value problems for these equations in weighted Sobolev spaces on the positive semiaxis.
Keywords: integro-differential equation, operator function, well-posedness.
@article{INTO_2021_191_a13,
     author = {N. A. Rautian},
     title = {Well-posedness of {Volterra} integro-differential equations with singular kernels},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {135--148},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/}
}
TY  - JOUR
AU  - N. A. Rautian
TI  - Well-posedness of Volterra integro-differential equations with singular kernels
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 135
EP  - 148
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/
LA  - ru
ID  - INTO_2021_191_a13
ER  - 
%0 Journal Article
%A N. A. Rautian
%T Well-posedness of Volterra integro-differential equations with singular kernels
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 135-148
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/
%G ru
%F INTO_2021_191_a13
N. A. Rautian. Well-posedness of Volterra integro-differential equations with singular kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 135-148. http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/