Well-posedness of Volterra integro-differential equations with singular kernels
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 135-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of integro-differential equations with unbounded operator coefficients in a Hilbert space. The principal part of the equations considered is an abstract hyperbolic equation perturbed by terms containing Volterra integral operators with singular kernels. Such integro-differential equations describe, for example, linear viscoelastic phenomena, heat propagation processes in media with memory (the Gurtin–Pipkin equation), averaging problems in perforated media (Darcy's law), etc. We establish conditions for the existence and uniqueness of strong and generalized solutions to initial-boundary-value problems for these equations in weighted Sobolev spaces on the positive semiaxis.
Keywords: integro-differential equation, operator function, well-posedness.
@article{INTO_2021_191_a13,
     author = {N. A. Rautian},
     title = {Well-posedness of {Volterra} integro-differential equations with singular kernels},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {135--148},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/}
}
TY  - JOUR
AU  - N. A. Rautian
TI  - Well-posedness of Volterra integro-differential equations with singular kernels
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 135
EP  - 148
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/
LA  - ru
ID  - INTO_2021_191_a13
ER  - 
%0 Journal Article
%A N. A. Rautian
%T Well-posedness of Volterra integro-differential equations with singular kernels
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 135-148
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/
%G ru
%F INTO_2021_191_a13
N. A. Rautian. Well-posedness of Volterra integro-differential equations with singular kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 135-148. http://geodesic.mathdoc.fr/item/INTO_2021_191_a13/

[6] Vlasov V. V., Gavrikov A. A., Ivanov S. A., Knyazkov D. Yu., Samarin V. A., Shamaev A. S., “Spektralnye svoistva kombinirovannykh sred”, Sovr. probl. mat. mekh. *, 5:1 (2009), 134–155

[7] Vlasov V. V., Rautian N. A., “O svoistvakh reshenii integrodifferentsialnykh uravnenii, voznikayuschikh v teorii teplomassoobmena”, Tr. Mosk. mat. o-va., 75:2 (2014), 131–155 | MR

[8] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Sovr. mat. Fundam. napr., 58 (2015), 22–42

[9] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016

[10] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost volterrovykh integro-differentsialnykh uravnenii v gilbertovom prostranstve”, Differ. uravn., 52:9 (2016), 1168–1177 | Zbl

[11] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v teorii vyazkouprugosti”, Sovr. mat. Fundam. napr., 64:1 (2018), 60–73 | MR

[12] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz volterrovykh integrodifferentsialnykh uravnenii s singulyarnymi yadrami”, Dokl. RAN., 482:6 (2018), 635–638 | Zbl

[13] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i predstavlenie reshenii volterrovykh integro-differentsialnykh uravnenii, voniznikayuschikh v teorii vyazkouprugosti”, Differ. uravn., 55:4 (2019), 574–587 | Zbl

[14] Vlasov V. V., Rautian N. A., “Issledovanie operatornykh modelei, voznikayuschikh v zadachakh nasledstvennoi mekhaniki”, Tr. semin. im. I. G. Petrovskogo., 32 (2019), 91–110

[15] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[16] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970

[17] Lykov A. V., Problema teplo- i massoobmena, Nauka i tekhnika, Minsk, 1976 | MR

[18] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977

[19] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of Materials with Memory. Theory and Applications, Springer-Verlag, New York–Dordrecht–Heidelberg–London, 2012 | MR | Zbl

[20] Desch W., Miller R., “Exponential stabilization of Volterra Integrodifferential equations in Hilbert space”, J. Differ. Equations., 70 (1987), 366–389 | DOI | MR | Zbl

[21] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin-type equations”, SIAM J. Math. Anal., 43:5 (2011), 2296–2306 | DOI | MR | Zbl

[22] Fabrizio M., Gentili G., Golden J. M., “Non-isothermal free energies for linear theories with memory”, Math. Comp. Model., 39 (2004), 219–253 | DOI | MR | Zbl

[23] Fabrizio M., Morro A., Mathematical Problems in Linear Viscoelasticity, SIAM Stud. Appl. Math., Philadelphia, PA, 1992 | MR | Zbl

[24] Gurtin M. E., Pipkin A. C., “Theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[25] Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics. Vol. 2. Non-self-adjoint Problems for Viscous Fluids, Springer-Verlag, Basel, 2003 | MR

[26] Lions J. L. and Magenes E., Nonhomogeneous Boundary-Value Problems and Applications, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR

[27] Mahiuddin M., Khan M. I. H., Nghia Duc Pham, Karim M. A., “Development of fractional viscoelastic model for characterising viscoelastic properties of food material during drying”, Food Biosci., 23 (2018), 45–53 | DOI

[28] Pandolfi L., “The controllability of the Gurtin-Pipkin equations: a cosine operator approach”, Appl. Math. Optim., 52 (2005), 143–165 | DOI | MR | Zbl

[29] Prüss J., Evolutionary Integral Equations amd Applications, Basel–Baston–Berlin, Birkhäuser-Verlag | MR

[30] Rassoli A., Fatouraee N., Guidoin R., “Structural model for viscoelastic properties of pericardial bioprosthetic valves”, Artificial Organs., 42 (2018), 630–639 | DOI

[31] Seneta E., Regularly Varying Functions, Springer-Verlag, 1976 | MR | Zbl

[32] Shahin-Shamsabadi A. et al., “Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity”, Mat. Sci. Eng. C., 90 (2018), 280–288 | DOI

[33] Stropek Z., Golacki K., “Viscoelastic response of apple flesh in a wide range of mechanical loading rates”, Int. Agrophys., 32 (2018), 335–340 | DOI

[34] Vlasov V. V., Rautian N. A., “Well-defined solvability and spectral analysis of abstract hyperbolic equations”, J. Math. Sci., 179:3 (2011), 390–415 | DOI | MR

[35] Vlasov V. V., Wu J., “Solvability and spectral analysis of abstract hyperbolic equations with delay”, Funct. Differ. Equations., 16:4 (2009), 751–768 | MR | Zbl

[36] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Differ. Integr. Equations., 4:6 (1991), 1325–1351 | MR | Zbl