Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_190_a7, author = {T. V. Zav'yalova and G. A. Timofeeva}, title = {Study of the dynamics of a jump-like change in price in the generalized {Black--Scholes} model}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {88--92}, publisher = {mathdoc}, volume = {190}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a7/} }
TY - JOUR AU - T. V. Zav'yalova AU - G. A. Timofeeva TI - Study of the dynamics of a jump-like change in price in the generalized Black--Scholes model JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 88 EP - 92 VL - 190 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_190_a7/ LA - ru ID - INTO_2021_190_a7 ER -
%0 Journal Article %A T. V. Zav'yalova %A G. A. Timofeeva %T Study of the dynamics of a jump-like change in price in the generalized Black--Scholes model %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 88-92 %V 190 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_190_a7/ %G ru %F INTO_2021_190_a7
T. V. Zav'yalova; G. A. Timofeeva. Study of the dynamics of a jump-like change in price in the generalized Black--Scholes model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 88-92. http://geodesic.mathdoc.fr/item/INTO_2021_190_a7/
[1] Zavyalova T. V., Kats I. Ya., Timofeeva G. A., “Ob ustoichivosti dvizheniya stokhasticheskikh sistem so sluchainym usloviem skachka fazovoi traektorii”, Avtomat. telemekh., 7 (2002), 33–43 | MR
[2] Kats I. Ya., Metod funktsii Lyapunova v zadachakh ustoichivosti i stabilizatsii sistem sluchainoi struktury, Izd-vo UrGUPS, Ekaterinburg, 1998
[3] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki. I. Fakty. Modeli, Fazis, M., 1998
[4] Bates D., “Jump and stochastic volatility: Exchange rate processes implicit in Deutsche mark options”, Rev. Fin. Stud., 9 (1996), 69–-107 | DOI
[5] Heston S. L., “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Rev. Fin. Stud., 6 (1993), 327–344 | DOI | MR
[6] Jorion P., “On jump processes in the foreign exchange and stock markets”, Rev. Fin. Stud., 1 (1988), 427–445 | DOI
[7] Merton R., “Option pricing when underlying stock returns are discontinuous”, J. Fin. Econ., 3 (1976), 125–-144 | DOI | Zbl
[8] Scott L. O., “The information content of prices in derivative security markets”, IMF Staff Papers., 39 (1992), 596–625 | DOI