Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_190_a12, author = {V. Tsekhan}, title = {Decomposition of a singularly perturbed functional-differential system based on a nondegenerate transformation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {130--143}, publisher = {mathdoc}, volume = {190}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a12/} }
TY - JOUR AU - V. Tsekhan TI - Decomposition of a singularly perturbed functional-differential system based on a nondegenerate transformation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 130 EP - 143 VL - 190 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_190_a12/ LA - ru ID - INTO_2021_190_a12 ER -
%0 Journal Article %A V. Tsekhan %T Decomposition of a singularly perturbed functional-differential system based on a nondegenerate transformation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 130-143 %V 190 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_190_a12/ %G ru %F INTO_2021_190_a12
V. Tsekhan. Decomposition of a singularly perturbed functional-differential system based on a nondegenerate transformation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 130-143. http://geodesic.mathdoc.fr/item/INTO_2021_190_a12/
[1] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Mat. anal., 20 (1982), 3–77 | MR | Zbl
[2] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomat. telemekh., 1 (2006), 3–51 | Zbl
[3] Kopeikina T. B., “Ob upravlyaemosti lineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differ. uravn., 1989, 1508–1518 | MR
[4] Kurina G. A., “O polnoi upravlyaemosti raznotempovykh singulyarno vozmuschennykh sistem”, Mat. zametki., 52:4 (1992), 56–61 | MR | Zbl
[5] Tsekhan O. B., “Rasscheplyayuschee preobrazovanie dlya lineinoi statsionarnoi singulyarno vozmuschennoi sistemy s zapazdyvaniem i ego primenenie k analizu i upravleniyu spektrom”, Vesn. GrDU im. Ya. Kupaly. Ser 2. Mat., 7:1 (2017), 50–61
[6] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984
[7] Chang K., “Singular perturbations of a general boundary value problem”, SIAM J. Math. Anal., 3:3 (1972), 520–526 | DOI | MR | Zbl
[8] Fridman E., “Decoupling transformation of singularly perturbed systems with small delays and its applications”, Z. Angew. Math. Mech. Berlin., 76:2 (1996), 201–204 | Zbl
[9] Gajic Z., Shen X., Parallel algorithms for optimal control of large scale linear systems, Springer-Verlag, London, 1993 | MR | Zbl
[10] Glizer V. Ya., “L2-Stabilizability conditions for a class of nonstandard singularly perturbed functional-differential systems”, Dyn. Cont. Discr. Impuls. Systems. Ser. es B: Appl. Alg., 16 (2009), 181–213 | MR | Zbl
[11] Glizer V. Ya., “Approximate state-space controllability of linear singularly perturbed systems with two scales of state delays”, Asympt. Anal., 107:1–2 (2018), 73–114 | MR | Zbl
[12] Kokotovic P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Contr., 20:1 (1975), 111–113 | DOI | MR | Zbl
[13] Kokotovic P. V., Khalil H. K., O'Reilly J., Singular Perturbations Methods in Control: Analysis and Design, Academic Press, New York, 1986 | MR
[14] Magalhaes L. T., “Exponential estimates for singularly perturbed linear functional differential equations”, J. Math. Anal. Appl., 103 (1984), 443–460 | DOI | MR | Zbl
[15] Pekar L., Gao Q., “Spectrum analysis of LTI continuous-time systems with constant delays: a literature overview of some recent results”, IEEE Acc., 6:1 (2018), 35457–35491 | DOI
[16] Prljaca N., Gajic Z., “General transformation for block diagonalization of multitime-scale singularly perturbed linear systems”, IEEE Trans. Automat. Contr., 53:5 (2008), 1303–1305 | DOI | MR | Zbl
[17] Yang X., Zhu J. J., “A generalization of Chang transformation for linear time-varying systems”, Proc. IEEE Conf. on Decision and Control, Atlanta, GA, 2010, 6863–6869
[18] Yang X., Zhu J. J., “Chang transformation for decoupling of singularly perturbed linear slowly time-varying systems”, Proc. 51st IEEE Conf. on Decision and Control (December 10-13, Maui, Hawaii, USA), 2012, 5755–5760
[19] Zhang Y., Naidu D. S., Cai C, et al., “Singular perturbations and time scales in control theories and applications: An overview 2002 – 2012”, Int. J. Inf. Syst. Sci., 9:1 (2014), 1–36 | MR