Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_190_a10, author = {I. V. Kolesnikova}, title = {Three-mode bendings of a compressed beam on a double elastic foundation in the modified {Vlasov--Leontyev} model}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {115--121}, publisher = {mathdoc}, volume = {190}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/} }
TY - JOUR AU - I. V. Kolesnikova TI - Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 115 EP - 121 VL - 190 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/ LA - ru ID - INTO_2021_190_a10 ER -
%0 Journal Article %A I. V. Kolesnikova %T Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 115-121 %V 190 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/ %G ru %F INTO_2021_190_a10
I. V. Kolesnikova. Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 115-121. http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/
[1] Arnold V. I., «Zhestkie» i «myagkie» matematicheskie modeli, MTsNMO, M., 2008
[2] Bardin B. S., Furta S. D., “Lokalnaya teoriya suschestvovaniya periodicheskikh volnovykh dvizhenii beskonechnoi balki na nelineino uprugom osnovanii”, Aktualnye problemy klassicheskoi i nebesnoi mekhaniki, Elf, M., 1998, 13–22
[3] Vlasov V. Z., Leontev N. N., Balki, plity i obolochki na uprugom osnovanii, Fizmatgiz, M., 1960
[4] Gneushev I. A., Kolesnikova I. V., Kostin D. V., Sapronov Yu. I., “Progiby szhatoi balki na dvoinom uprugom osnovanii (v obobschennoi modeli Vlasova—Leonteva)”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 2 (2018), 173–181 | Zbl
[5] Darinskii B. M., Kolesnikova I. V., Sapronov Yu. I., “Vetvlenie segnetoelektricheskikh faz neodnorodnogo kristalla vblizi kriticheskoi fazy s trekhmernoi osobennostyu shestogo poryadka”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 3 (2009), 101–107
[6] Darinskii B. M., Sapronov Yu. I., “Bifurkatsii ekstremalei vblizi osobennosti mnogomernoi sborki”, Izv. vuzov. Mat., 1997, no. 2, 35–46 | MR | Zbl
[7] Darinskii B. M., Sapronov Yu. I., Tsarev S. L., “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovr. mat. Fundam. napr., 12 (2004), 3–140 | Zbl
[8] Zachepa A. V., Sapronov Yu. I., “O bifurkatsii ekstremalei fredgolmova funktsionala iz vyrozhdennoi tochki minimuma s osobennostyu $3$-mernoi sborki”, Tr. mat. fak-ta Voronezh. un-ta., 9 (2005), 57–71
[9] Kostin D. V., “Primenenie formuly Maslova dlya asimptoticheskogo resheniya odnoi zadachi ob uprugikh deformatsiyakh”, Mat. zametki., 83:1 (2008), 50–60 | MR | Zbl
[10] Kostin D. V., “Ob odnoi skheme analiza dvukhmodovykh progibov slabo neodnorodnoi uprugoi balki”, Dokl. RAN., 418:4 (2008), 295–299 | Zbl
[11] Kostin D. V., Sapronov Yu. I., Funktsionalnyi analiz i mnogomodovye progiby uprugikh sistem, IPTs VGU, Voronezh, 2012
[12] Mitropolskii Yu. O., Moseenkov B. I., Doslidzhennya kolivan v sistemakh z rozpodilenimi parametrami (asimptotichni metodi), Kiïv, 1961
[13] Sapronov Yu. I., “Mnogomodovye bifurkatsii uprugikh ravnovesii”, Prikl. mat. mekh., 52:6 (1988), 997–1006 | MR | Zbl
[14] Sapronov Yu. I., “Poluregulyarnye uglovye osobennosti gladkikh funktsii”, Mat. sb., 180:10 (1989), 1299–1310
[15] Sapronov Yu. I., “Konechnomernye reduktsii v gladkikh ekstremalnykh zadachakh”, Usp. mat. nauk., 51:1 (1996), 101–132 | MR
[16] Thompson J. M. T., “Advances in shell buckling : Theory and experiments”, Int. J. Bifurcat. Chaos., 25:1 (2015), 1–25 | DOI | MR
[17] Thompson J. M. T., Hunt G. W., A General Theory of Elastic Stability, Wiley, 1973 | MR | Zbl