Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 115-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present an algorithm for approximate calculation and analysis of supercritical bendings of a longitudinally compressed, elastic beam on a double elastic foundation in the modified Vlasov–Leontiev model. The procedure is based on the Poincaré–Lyapunov–Schmidt variational method, which allows one to reduce the analysis of supercritical deformations of a beam to the analysis of critical points of the key function on the finite-dimensional space of key variables. The Lyapunov–Schmidt method allows one to calculate supercritical bendings of the beam, to determine the stability of bifurcating states, and to analyze the structure of the caustic (discriminant set) in the space of control parameters. The basic idea is the reduction of the problem on bendings of a beam to the discriminant analysis of branching of critical points of a polynomial in three variables (the principal part of the Lyapunov–Schmidt key function).
Keywords: Vlasov–Leontyev model, generalized Dirichlet boundary conditions, energy functional, bending mode, Lyapunov–Schmidt key function, branch of bending, caustic.
@article{INTO_2021_190_a10,
     author = {I. V. Kolesnikova},
     title = {Three-mode bendings of a compressed beam on a double elastic foundation in the modified {Vlasov--Leontyev} model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {115--121},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/}
}
TY  - JOUR
AU  - I. V. Kolesnikova
TI  - Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 115
EP  - 121
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/
LA  - ru
ID  - INTO_2021_190_a10
ER  - 
%0 Journal Article
%A I. V. Kolesnikova
%T Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 115-121
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/
%G ru
%F INTO_2021_190_a10
I. V. Kolesnikova. Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 115-121. http://geodesic.mathdoc.fr/item/INTO_2021_190_a10/

[1] Arnold V. I., «Zhestkie» i «myagkie» matematicheskie modeli, MTsNMO, M., 2008

[2] Bardin B. S., Furta S. D., “Lokalnaya teoriya suschestvovaniya periodicheskikh volnovykh dvizhenii beskonechnoi balki na nelineino uprugom osnovanii”, Aktualnye problemy klassicheskoi i nebesnoi mekhaniki, Elf, M., 1998, 13–22

[3] Vlasov V. Z., Leontev N. N., Balki, plity i obolochki na uprugom osnovanii, Fizmatgiz, M., 1960

[4] Gneushev I. A., Kolesnikova I. V., Kostin D. V., Sapronov Yu. I., “Progiby szhatoi balki na dvoinom uprugom osnovanii (v obobschennoi modeli Vlasova—Leonteva)”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 2 (2018), 173–181 | Zbl

[5] Darinskii B. M., Kolesnikova I. V., Sapronov Yu. I., “Vetvlenie segnetoelektricheskikh faz neodnorodnogo kristalla vblizi kriticheskoi fazy s trekhmernoi osobennostyu shestogo poryadka”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 3 (2009), 101–107

[6] Darinskii B. M., Sapronov Yu. I., “Bifurkatsii ekstremalei vblizi osobennosti mnogomernoi sborki”, Izv. vuzov. Mat., 1997, no. 2, 35–46 | MR | Zbl

[7] Darinskii B. M., Sapronov Yu. I., Tsarev S. L., “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovr. mat. Fundam. napr., 12 (2004), 3–140 | Zbl

[8] Zachepa A. V., Sapronov Yu. I., “O bifurkatsii ekstremalei fredgolmova funktsionala iz vyrozhdennoi tochki minimuma s osobennostyu $3$-mernoi sborki”, Tr. mat. fak-ta Voronezh. un-ta., 9 (2005), 57–71

[9] Kostin D. V., “Primenenie formuly Maslova dlya asimptoticheskogo resheniya odnoi zadachi ob uprugikh deformatsiyakh”, Mat. zametki., 83:1 (2008), 50–60 | MR | Zbl

[10] Kostin D. V., “Ob odnoi skheme analiza dvukhmodovykh progibov slabo neodnorodnoi uprugoi balki”, Dokl. RAN., 418:4 (2008), 295–299 | Zbl

[11] Kostin D. V., Sapronov Yu. I., Funktsionalnyi analiz i mnogomodovye progiby uprugikh sistem, IPTs VGU, Voronezh, 2012

[12] Mitropolskii Yu. O., Moseenkov B. I., Doslidzhennya kolivan v sistemakh z rozpodilenimi parametrami (asimptotichni metodi), Kiïv, 1961

[13] Sapronov Yu. I., “Mnogomodovye bifurkatsii uprugikh ravnovesii”, Prikl. mat. mekh., 52:6 (1988), 997–1006 | MR | Zbl

[14] Sapronov Yu. I., “Poluregulyarnye uglovye osobennosti gladkikh funktsii”, Mat. sb., 180:10 (1989), 1299–1310

[15] Sapronov Yu. I., “Konechnomernye reduktsii v gladkikh ekstremalnykh zadachakh”, Usp. mat. nauk., 51:1 (1996), 101–132 | MR

[16] Thompson J. M. T., “Advances in shell buckling : Theory and experiments”, Int. J. Bifurcat. Chaos., 25:1 (2015), 1–25 | DOI | MR

[17] Thompson J. M. T., Hunt G. W., A General Theory of Elastic Stability, Wiley, 1973 | MR | Zbl