On an approach to enumeration of labeled connected graphs: A review
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 106-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The classical functional Riddell equation connects the generating functions of labeled connected graphs and their blocks. Using the Lagrange inversion theorem, the author obtained from this equation a formula, which is a convenient tool for the exact and asymptotic enumeration of labeled graphs in the case where the generating function of their blocks is known. This formula is valid for block-stable graph classes. A review of enumerative results obtained by using this approach for cacti, block-cactus graphs, Eulerian graphs, geodesic graphs, planar graphs, and series-parallel graphs is presented.
Keywords: enumeration, labeled graph, connected graph, block.
@article{INTO_2020_188_a8,
     author = {V. A. Voblyi},
     title = {On an approach to enumeration of labeled connected graphs: {A} review},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {106--118},
     year = {2020},
     volume = {188},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a8/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - On an approach to enumeration of labeled connected graphs: A review
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 106
EP  - 118
VL  - 188
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a8/
LA  - ru
ID  - INTO_2020_188_a8
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T On an approach to enumeration of labeled connected graphs: A review
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 106-118
%V 188
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a8/
%G ru
%F INTO_2020_188_a8
V. A. Voblyi. On an approach to enumeration of labeled connected graphs: A review. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 106-118. http://geodesic.mathdoc.fr/item/INTO_2020_188_a8/

[1] Voblyi V. A., “O koeffitsientakh Raita i Stepanova—Raita”, Mat. zametki., 42:6 (1987), 854–862

[2] Voblyi V. A., “O perechislenii pomechennykh svyaznykh grafov po chislu tochek sochleneniya”, Diskr. mat., 20:1 (2008), 52–63 | Zbl

[3] Voblyi V. A., “Ob odnoi formule dlya chisla pomechennykh svyaznykh grafov”, Diskr. anal. issl. oper., 19:4 (2012), 48–59 | MR | Zbl

[4] Voblyi V. A., “Perechislenie pomechennykh eilerovykh kaktusov”, Mat. XI Mezhdunar. semin. «Diskretnaya matematika i ee prilozheniya», MGU, M., 2012, 275–277

[5] Voblyi V. A. Perechislenie pomechennykh geodezicheskikh planarnykh grafov, Mat. zametki., 97:3 (2015), 336–341 | MR | Zbl

[6] Voblyi V. A., “Vyrazhenie chisla pomechennykh svyaznykh grafov cherez chislo pomechennykh blokov s pomoschyu mnogochlenov razbienii”, Tez. dokl. Mezhdunar. nauch. konf. «Diskretnaya matematika, algebra i ikh prilozheniya» (14-18 sentyabrya 2015 g. Minsk, Belarus), Minsk, 2015, 95–96

[7] Voblyi V. A., “O perechislenii pomechennykh svyaznykh grafov s zadannymi chislami vershin i reber”, Diskr. anal. issl. oper., 23:2 (2016), 5–20 | Zbl

[8] Voblyi V. A., “Perechislenie pomechennykh geodezicheskikh grafov s malym tsiklomaticheskim chislom”, Mat. zametki., 101:5 (2017), 684–689 | MR | Zbl

[9] Voblyi V. A., “Chislo pomechennykh vneshneplanarnykh $k$-tsiklicheskikh grafov”, Mat. zametki., 103:5 (2018), 657–666 | MR | Zbl

[10] Voblyi V. A., “Vtoroe sootnoshenie Riddela i sledstviya iz nego”, Diskr. anal. issl. oper., 26:1 (2019), 20–32 | Zbl

[11] Voblyi V. A., “O chisle pomechennykh vneshneplanarnykh $k$-tsiklicheskikh grafov bez mostov”, Diskr. anal. issl. oper., 27:1 (2020), 5–16 | MR

[12] Voblyi V. A., “Ob asimptoticheskom perechislenii pomechennykh svyaznykh $k$-tsiklicheskikh grafov bez mostov”, Mat. zametki., 107:2 (2020), 304–306 | MR | Zbl

[13] Voblyi V. A., “Perechislenie pomechennykh posledovatelno-parallelnykh tritsiklicheskikh grafov//”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 177 (2020), 132–136

[14] Voblyi V. A. Asimptoticheskoe perechislenie pomechennykh posledovatelno-parallelnykh tetratsiklicheskikh grafov, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 187 (2020), 31–35

[15] Voblyi V. A., “Perechislenie pomechennykh eilerovykh pentatsiklicheskikh grafov”, Prikl. diskr. mat., 2020, no. 50, 87–92

[16] Voblyi V. A., “Utochnenie asimptotiki dlya chisla pomechennykh posledovatelno-parallelnykh grafov”, Mat. zametki., 109:6 (2021), 944–947

[17] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh eilerovykh polnoblochnykh grafov”, Mat. XV Mezhdunar. semin. «Kombinatornye konfiguratsii i ikh prilozheniya», Kirovograd, 2013, 15–28

[18] Voblyi V. A., Meleshko A. K., “Novaya formula dlya chisla pomechennykh kaktusov s zadannym chislom vershin”, Tez. dokl. Mezhdunar. nauch. konf. «Diskretnaya matematika, teoriya grafov i ikh prilozheniya», Minsk, 2013, 9–11

[19] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh polnoblochno-kaktusnykh grafov”, Diskr. anal. issl. oper., 21 (2014), 24–32 | MR | Zbl

[20] Voblyi V. A., Meleshko A. K., “Asimptoticheskoe perechislenie pomechennykh eilerovykh kaktusov”, Mat. XVII Mezhdunar. konf. «Problemy teoreticheskoi kibernetiki», Kazan, 2014, 58–60

[21] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh dvudolnykh kaktusov”, Mat. IX Mezhdunar. konf. «Diskretnye modeli v teorii upravlyayuschikh sistem», M., 2015, 57–58

[22] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh planarnykh polnoblochno-kaktusnykh grafov”, Mat. XX Mezhdunar. semin. «Diskretnaya matematika i ee prilozheniya», M., 2016, 287–290

[23] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh kaktusov bez treugolnikov”, Mat. XIX Mezhdunar. semin. «Kombinatornye konfiguratsii i ikh prilozheniya», Kropivnitskii, 2017, 17–19

[24] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh dvudolnykh $k$-tsiklicheskikh kaktusov”, Tr. X Mezhdunar. konf. «Diskretnye modeli v teorii upravlyayuschikh sistem», M., 2018, 86–88

[25] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh eilerovykh kaktusov bez treugolnikov”, Mat. XV Mezhdunar. konf. «Algebra, teoriya chisel i diskretnaya geometriya. Sovremennye problemy i prilozheniya», Tula, 2018, 165–168

[26] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[27] Ivanchik I. I., “Problemy teorii grafov v statisticheskoi fizike”, Tr. Fiz. in-ta AN SSSR., 106 (1979), 3–89 | MR

[28] Kalmykov G. I., Drevesnaya klassifikatsiya pomechennykh grafov, Fizmatlit, M., 2003

[29] Kalmykov G. I., Karkasnaya klassifikatsiya pomechennykh grafov, Fizmatlit, M., 2006

[30] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR

[31] Stenli R., Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005

[32] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[33] Kharari F., Teoriya grafov, Mir, M., 1973

[34] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977

[35] Amudha P., Sagayaraj A. C. C., Sheela A. C. S., “An application of graph theory in cryptography”, Int. J. Pure Appl. Math., 119:13 (2018), 375–383

[36] Bergeron F., Labelle G., Leroux P., Combinatorial Species and Tree-Like Structures, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[37] Bodirsky M., Kang M., “Generating outerplanar graphs uniformly at random”, Combin. Probab. Comput., 15:3 (2006), 333–343 | DOI | MR | Zbl

[38] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Eur. J. Combin., 28:8 (2007), 2091–2105 | DOI | MR | Zbl

[39] Carlitz L., “Single variable Bell polynomials”, Collect. Math., 14 (1962 *s 13–25) | MR | Zbl

[40] Drmota M., Random Trees, Springer, Wien–NewYork, 2009 | MR | Zbl

[41] Drmota M., Fusy E., Kang M., Kraus V., Rue J., “Asymptotic study of subcritical graph classes”, SIAM J. Discr. Math., 25:4 (2011), 1615–1651 | DOI | MR | Zbl

[42] Flajolet P., Sedgewick G. E., Analytic Combinatorics, Cambridge Univ. Press, 2009 | MR | Zbl

[43] Fleisher L., “Building chain and cactus representations of all minimum cuts from Hao–Orlin in the same asymptotic run time”, J. Algorithms., 33:5 (1999 *s 51–72) | MR

[44] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in the theory of graphs, I”, Proc. Natl. Acad. Sci. U.S.A., 42:3 (1956), 122–128 | DOI | MR | Zbl

[45] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in theory graphs, III”, Proc. Natl. Acad. Sci. U.S.A., 42 (1956), 529–535 | DOI | MR | Zbl

[46] Frasser C. E., “$k$-Geodetic graphs and their application to the topological design of computer networks”, Proc. Argentinian Workshop on Theoretical Computer Science (28 JAIIO-WAIT'99), 1999, 187–203

[47] Kumar A., “A study on Euler graph and its applications”, Int. J. Math. Trends Technol., 43:1 (2017), 9–14 | DOI | MR

[48] Labelle G., Leroux P., Ducharme M. G., “Graph weights arising from Mayer's theory cluster integrals”, Sém. Lothar. Combin., 54 (2007), B54m | MR

[49] Leroux P., “Enumerative problems inspired by Mayer's theory of cluster integrals”, Electron. J. Combin., 11 (2004), R32 | DOI | MR | Zbl

[50] McDiarmid C., Scott A., “Random graphs from a block stable class”, Eur. J. Combin., 58 (2016), 96–106 | DOI | MR | Zbl

[51] Moon J., Counting Labelled Trees, Can. Math. Congr., Montreal, 1970 | MR | Zbl

[52] NIST Handbook of Mathematical Gunctions, Cambridge Univ. Press, New York, 2010

[53] Noy M., “Random planar graphs and beyond”, Proc. Int. Congr. Math., Seoul, 2014, 407–431 | MR

[54] Noy M., “Graphs”, Handbook of Enumerative Combinatorics, CRC Press, 403–442 | MR

[55] Pancoska P., Moravek Z., Moll U. M., “Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs”, Nucl. Acids Res., 32:15 (2004), 4630–4645 | DOI

[56] Percus J. M., Combinatorial Methods, Springer, New York–Heidelberg–Berlin, 1971 | MR | Zbl

[57] Radhavan S., “Low-connectivity network design on series-parallel graphs”, Networks., 43:3 (2004), 163–176 | DOI | MR

[58] Randerath B., Volkmann L., “A characterization of well covered block-cactus graphs”, Australas. J. Combin., 9 (1994), 307–314 | MR | Zbl

[59] Read R. C., “Euler graphs on labelled nodes”, Can. J. Math., 14 (1962), 482–486 | DOI | MR | Zbl

[60] Riddell R. J., “On the theory of the virial development of the equation of state of monoatomic gases”, J. Chem. Phys., 11:11 (1953), 2056–2064 | DOI | MR

[61] Stemple J. G., Watkins M. E., “On planar geodetic graphs”, J. Combin. Theory., 4 (1968), 101–117 | DOI | MR | Zbl

[62] Takamizawa K., Nishezeki T., Saito N., “Linear-time computability of combinatorial problems on series-parallel graphs”, J. ACM., 29:3 (1982), 623–641 | DOI | MR | Zbl

[63] Tazawa S., “Enumeration of labeled 2-connected Euler graphs”, J. Combin. Inform. System Sci., 23:1-4 (1998), 407–414 | MR | Zbl

[64] Vicente R., Saad D., Kabashima Y., “Error-correcting code on a cactus: a solvable model”, Europhys. Lett., 51:6 (2000), 698–704 | DOI

[65] Whitney H., “Non-separable and planar graphs”, Trans. Am. Math. Soc., 34 (1932), 339–362 | DOI | MR

[66] Wright E. M., “The number of connected sparsely edged graphs, III”, J. Graph Theory., 4:4 (1980), 393–407 | DOI | MR | Zbl

[67] Wright E. M., “The number of connected sparsely edged graphs, IV”, J. Graph Theory., 7:2 (1983), 219–229 | DOI | MR | Zbl