Method of asymptotic splitting in dynamical problems of the spatial theory of elasticity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we apply the method of asymptotic splitting to dynamical problems of the spatial theory of elasticity, whose equations contain a small parameter, and obtain asymptotic solutions. Two-dimensional and one-dimensional boundary-value problems arising in the process of asymptotic splitting allow obtaining analytical solutions in some special cases. In the general case, they can be solved numerically by the collocation method, the method of least squares, and the finite-element method.
Keywords: spatial theory of elasticity, dynamical problem, method of asymptotic splitting, collocation method, method of least squares, finite element method, layered beam, free oscillations.
@article{INTO_2020_188_a3,
     author = {S. K. Golushko and G. L. Gorynin and A. G. Gorynin},
     title = {Method of asymptotic splitting in dynamical problems of the spatial theory of elasticity},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a3/}
}
TY  - JOUR
AU  - S. K. Golushko
AU  - G. L. Gorynin
AU  - A. G. Gorynin
TI  - Method of asymptotic splitting in dynamical problems of the spatial theory of elasticity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 43
EP  - 53
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a3/
LA  - ru
ID  - INTO_2020_188_a3
ER  - 
%0 Journal Article
%A S. K. Golushko
%A G. L. Gorynin
%A A. G. Gorynin
%T Method of asymptotic splitting in dynamical problems of the spatial theory of elasticity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 43-53
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a3/
%G ru
%F INTO_2020_188_a3
S. K. Golushko; G. L. Gorynin; A. G. Gorynin. Method of asymptotic splitting in dynamical problems of the spatial theory of elasticity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 43-53. http://geodesic.mathdoc.fr/item/INTO_2020_188_a3/

[1] Agalovyan L. A., Asimptoticheskaya teoriya anizotropnykh plastin i obolochek, Nauka, M., 1997

[2] Ambartsumyan S. A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974

[3] Andreev A. N., Nemirovskii Yu. V., Mnogosloinye anizotropnye obolochki i plastiny: Izgib, utoichivost, kolebaniya, Nauka, Novosibirsk, 2001

[4] Birger I. A., Sterzhni, plastinki, obolchki, Lenand, M., 2015

[5] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980

[6] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973

[7] Golushko S. K., Nemirovskii Yu. V., Pryamye i obratnye zadachi mekhaniki uprugikh kompozitnykh plastin i obolochek vrascheniya, Fizmatlit, M., 2008

[8] Golushko S. K., Idimeshev S. V., Shapeev V. P., “Metod kollokatsii i naimenshikh nevyazok v prilozhenii k zadacham mekhaniki izotropnykh plastin”, Vychisl. tekhnol., 18:6 (2013), 31–43

[9] Golushko S. K., Idimeshev S. V., Shapeev V. P., “Razrabotka i primenenie metoda kollokatsii i naimenshikh nevyazok k resheniyu zadach anizotropnykh sloistykh plastin”, Vychisl. tekhnol., 19:5 (2014), 24–36 | Zbl

[10] Golushko S. K., Idimeshev S. V., Semisalov B. V., Metody resheniya kraevykh zadach mekhaniki kompozitnykh plastin i obolochek, Novosibirsk, 2014

[11] Gorynin G. L., Nemirovskii Yu. V., Prostranstvennye zadachi izgiba i krucheniya sloistykh konstruktsii. Metod asimptoticheskogo rasschepleniya, Nauka, Novosibirsk, 2004

[12] Gorynin G. L., Vlasko A. F., “Issledovanie kromochnogo pogranichnogo sloya v trekhmernom sterzhne pri rastyazhenii”, Doklyu 3 i Vseross. konf. «Problemy optimalnogo proektirovaniya sooruzhenii» (Novosibirsk, 15–17 aprelya 2017 g.), NGASU, Novosibirsk, 2017, 74–79

[13] Gorynin G. L., Gorynina O. G., “Issledovanie napryazhenno-deformiruemogo sostoyaniya trekhsloinogo dvutavra v prostranstvennoi postanovke”, Vestn. SibADI., 2012, no. 5 (27), 49–54

[14] Grigolyuk E. I., Selezov I. T., “Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek”, Itogi nauki tekhn. Mekh. tv. deform. tel., 5 (1973) | Zbl

[15] Donnel L. G., Balki, plastiny, obolochki, Nauka, M., 1982

[16] Koul Dzh., Metody vozmuschenii v prikladnoi mekhanike, Mir, M., 1972

[17] Obraztsov I. F., Nerubailo B. V., Andrianov I. V., Asimptoticheskie metody v stroitelnoi mekhanike tonkostennykh konstruktsii, Mashinostroenie, M., 1991 | MR

[18] Timoshenko S. P., Yang D. Kh., Uiver U., Kolebaniya v inzhenernom dele, Mashinostroenie, M., 1985

[19] Alnaes M. S., Blechta J., Hake J., Johansson A., Kehlet B., Logg A., Richardson C., Ring J., Rognes M. E., Wells G. N., “The FEniCS Project Ver. 1.5”, Arch. Numer. Software., 3 (2015)

[20] Golushko S. K., “Mathematical modeling and numerical optimization of composite structures”, Optimum Composite Structures, IntechOpen, London, 2019, 13–34

[21] Gorynin G. L., Nemirovsky Yu. V., “Tranverse vibration of laminated beams in three-dimensional formulation”, Int. Appl. Mech., 41:6 (2005), 631–645 | DOI | Zbl

[22] Shapeev V. P., Belyaev V. A., Golushko S. K., Idimeshev S. V., “Possibilities and applications of the least squares collocation method”, EPJ Web Conf., 173 (2018), 01012 | DOI