Initial-value problem for distributed-order equations with a bounded operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 14-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using methods of the theory of the Laplace transform, we prove a theorem on the existence of a unique solution to an initial-value problem for a distributed-order differential equation in a Banach space, which involves a fractional Riemann—Liouville derivative and a bounded operator acting on the unknown function. We find this solution in the form of Dunford–Taylor-type integrals. The results obtained contribute to the theory of resolving operator families for equations in Banach spaces, including fractional-order differential equations and evolutionary integral equations; in particular, we generalize some results of the theory of semigroups of operators to the case of equations of distributed order. Abstract results for equations in Banach spaces are applied to a class of initial-boundary-value problems for distributed-order partial differential equations with polynomials in a self-adjoint elliptic differential operator with respect to the spatial variables.
Keywords: distributed-order equation, fractional Riemann–Liouville derivative, initial-value problem, initial-boundary-value problem.
Mots-clés : Laplace transform
@article{INTO_2020_188_a1,
     author = {V. E. Fedorov and A. A. Abdrakhmanova},
     title = {Initial-value problem for distributed-order equations with a bounded operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {14--22},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - A. A. Abdrakhmanova
TI  - Initial-value problem for distributed-order equations with a bounded operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 14
EP  - 22
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/
LA  - ru
ID  - INTO_2020_188_a1
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A A. A. Abdrakhmanova
%T Initial-value problem for distributed-order equations with a bounded operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 14-22
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/
%G ru
%F INTO_2020_188_a1
V. E. Fedorov; A. A. Abdrakhmanova. Initial-value problem for distributed-order equations with a bounded operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 14-22. http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/

[1] Nakhushev A. M., “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya, vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differ. uravn., 34:1 (1998), 103–112 | MR | Zbl

[2] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[3] Streletskaya E. M., Fedorov V. E., Debush A., “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Mat. zametki SVFU., 25:1 (2018), 63–72 | Zbl

[4] Atanacković T. M., Oparnica L., Pilipović S., “On a nonlinear distributed order fractional differential equation”, J. Math. Anal. Appl., 328 (2007), 590–608 | DOI | MR | Zbl

[5] Bagley R. L., Torvik P. J., “On the existence of the order domain and the solution of distributed order equations. Part 2”, Int. J. Appl. Math., 2:8 (2000), 965–987 | MR | Zbl

[6] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, Ph.D. thesis., Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl

[7] Caputo M., “Mean fractional order derivatives. Differential equations and filters”, Ann. Univ. Ferrara. Sez. VII. Sci. Mat., 41 (1995), 73–84 | MR | Zbl

[8] Diethelm K., Ford N. J., “Numerical solution methods for distributed order time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4 (2001), 531–542 | MR | Zbl

[9] Fedorov V. E., Streletskaya E. M., “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electron. J. Differ. Equ., 2018:176 (2018), 1–17 | MR | Zbl

[10] Hille E., Phillips R. S., Functional Analysis and Semigroups, Am. Math. Soc., Providence, Rhode Island, 1957 | Zbl

[11] Jiao Z., Chen Y., Podlubny I., “Distributed-order dynamic system”, Stability, Simulations, Applications and Perspectives, Springer-Verlag, London, 2012 | MR

[12] Kochubei A. N., “Distributed-order calculus and equations of ultraslow diffusion”, J. Math. Anal. Appl., 340 (2008), 252–280 | DOI | MR

[13] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015 | MR | Zbl

[14] Lorenzo C. F., Hartley T. T., “Variable order and distributed-order fractional operators”, Nonlin. Dyn., 29 (2002), 57–98 | DOI | MR | Zbl

[15] Prüss J., Evolutionary Integral Equations and Applications, Springer-Verlag, Basel, 1993 | MR

[16] Sokolov I. M., Chechkin A. V., Klafter J., “Distributed-order fractional kinetics”, Acta Phys. Pol. B., 35 (2004), 1323–1341

[17] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, Berlin, 1977 | MR

[18] Umarov S., Gorenflo R., “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations”, Z. Anal. Anw., 24 (2005), 449–466 | MR | Zbl