Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_188_a1, author = {V. E. Fedorov and A. A. Abdrakhmanova}, title = {Initial-value problem for distributed-order equations with a bounded operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {14--22}, publisher = {mathdoc}, volume = {188}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/} }
TY - JOUR AU - V. E. Fedorov AU - A. A. Abdrakhmanova TI - Initial-value problem for distributed-order equations with a bounded operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 14 EP - 22 VL - 188 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/ LA - ru ID - INTO_2020_188_a1 ER -
%0 Journal Article %A V. E. Fedorov %A A. A. Abdrakhmanova %T Initial-value problem for distributed-order equations with a bounded operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 14-22 %V 188 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/ %G ru %F INTO_2020_188_a1
V. E. Fedorov; A. A. Abdrakhmanova. Initial-value problem for distributed-order equations with a bounded operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 14-22. http://geodesic.mathdoc.fr/item/INTO_2020_188_a1/
[1] Nakhushev A. M., “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya, vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differ. uravn., 34:1 (1998), 103–112 | MR | Zbl
[2] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[3] Streletskaya E. M., Fedorov V. E., Debush A., “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Mat. zametki SVFU., 25:1 (2018), 63–72 | Zbl
[4] Atanacković T. M., Oparnica L., Pilipović S., “On a nonlinear distributed order fractional differential equation”, J. Math. Anal. Appl., 328 (2007), 590–608 | DOI | MR | Zbl
[5] Bagley R. L., Torvik P. J., “On the existence of the order domain and the solution of distributed order equations. Part 2”, Int. J. Appl. Math., 2:8 (2000), 965–987 | MR | Zbl
[6] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, Ph.D. thesis., Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl
[7] Caputo M., “Mean fractional order derivatives. Differential equations and filters”, Ann. Univ. Ferrara. Sez. VII. Sci. Mat., 41 (1995), 73–84 | MR | Zbl
[8] Diethelm K., Ford N. J., “Numerical solution methods for distributed order time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4 (2001), 531–542 | MR | Zbl
[9] Fedorov V. E., Streletskaya E. M., “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electron. J. Differ. Equ., 2018:176 (2018), 1–17 | MR | Zbl
[10] Hille E., Phillips R. S., Functional Analysis and Semigroups, Am. Math. Soc., Providence, Rhode Island, 1957 | Zbl
[11] Jiao Z., Chen Y., Podlubny I., “Distributed-order dynamic system”, Stability, Simulations, Applications and Perspectives, Springer-Verlag, London, 2012 | MR
[12] Kochubei A. N., “Distributed-order calculus and equations of ultraslow diffusion”, J. Math. Anal. Appl., 340 (2008), 252–280 | DOI | MR
[13] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015 | MR | Zbl
[14] Lorenzo C. F., Hartley T. T., “Variable order and distributed-order fractional operators”, Nonlin. Dyn., 29 (2002), 57–98 | DOI | MR | Zbl
[15] Prüss J., Evolutionary Integral Equations and Applications, Springer-Verlag, Basel, 1993 | MR
[16] Sokolov I. M., Chechkin A. V., Klafter J., “Distributed-order fractional kinetics”, Acta Phys. Pol. B., 35 (2004), 1323–1341
[17] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, Berlin, 1977 | MR
[18] Umarov S., Gorenflo R., “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations”, Z. Anal. Anw., 24 (2005), 449–466 | MR | Zbl