Limit sets of differential equations near singular critical points
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 119-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method of the study of dynamical systems near singular critical points, i.e., points in whose neighborhoods the vector field of the system cannot be expanded into a series. We apply methods of the theory of multidimensional topographic Poincaré systems for the search of attracting regimes in the system.
Keywords: dynamical system, singular critical point, limit cycle.
@article{INTO_2020_187_a9,
     author = {M. V. Shamolin},
     title = {Limit sets of differential equations near singular critical points},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {119--128},
     publisher = {mathdoc},
     volume = {187},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Limit sets of differential equations near singular critical points
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 119
EP  - 128
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/
LA  - ru
ID  - INTO_2020_187_a9
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Limit sets of differential equations near singular critical points
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 119-128
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/
%G ru
%F INTO_2020_187_a9
M. V. Shamolin. Limit sets of differential equations near singular critical points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 119-128. http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/

[1] Andronov A. A., Sobranie trudov, Izd-vo AN SSSR, M., 1956

[2] Andronov A. A., Leontovich E. A., “Nekotorye sluchai zavisimosti predelnykh tsiklov ot parametra”, Uch. zapiski GGU., 6 (1937)

[3] Bendikson I., “O krivykh opredelyaemykh differentsialnymi uravneniyami”, Usp. mat. nauk., 9 (1941), 119–211

[4] Birkgof Dzh., Dinamicheskie sistemy, Gostekhizdat, M.-L., 1941

[5] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[6] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[7] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973

[8] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.-L., 1950 | MR

[9] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.-L., 1953 | MR

[10] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[11] Ivanova T. A., “Ob uravneniyakh Eilera v modelyakh teoreticheskoi fiziki”, Mat. zametki., 52:2 (1992), 43–51

[12] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl

[13] Lamb G., Gidrodinamika, Fizmatgiz, M., 1947

[14] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, MGU, M., 1986

[15] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133

[16] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1986

[17] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975

[18] Palis Zh., Di Melu V., Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie, Mir, M., 1986

[19] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1967

[20] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947

[21] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (1989), 51–54 | Zbl

[22] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199 | MR | Zbl

[23] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[24] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987

[25] Shamolin M. V., “Zamknutye traektorii razlichnogo topologicheskogo tipa v zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2 (1992), 52–56 | MR | Zbl

[26] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1 (1992), 52–58 | MR | Zbl

[27] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[28] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2 (1993), 66–70 | MR | Zbl

[29] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1 (1993), 68–71 | MR

[30] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN., 337:5 (1994), 611–614 | Zbl

[31] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 4 (1996), 57–69 | MR | Zbl

[32] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN., 349:2 (1996), 193–197 | Zbl

[33] Shamolin M. V., “Opredelenie otnositelnoi grubosti i dvuparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela”, Usp. mat. nauk., 51:1 (1996), 175–176 | MR | Zbl

[34] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | MR | Zbl

[35] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl

[36] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, Usp. mat. nauk., 54:5 (1999), 181–182 | MR | Zbl

[37] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 371:4 (2000), 480–483

[38] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Usp. mat. nauk., 55:3 (2000), 187–188 | MR | Zbl

[39] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Usp. mat. nauk., 57:1 (2002), 169–170 | MR

[40] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[41] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[42] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237 | MR

[43] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk., 65:1 (2010), 189–190 | MR | Zbl

[44] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 3, 24–30 | Zbl

[45] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR

[46] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl

[47] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 453:1 (2013), 46–49 | MR

[48] Shamolin M. V., “Integriruemye dinamicheskie sistemy s dissipatsiei”, Tverdoe telo v nekonservativnom pole, LENAND, M., 2019, 456

[49] Yakobi K., Lektsii po dinamike, ONTI, M.-L., 1936

[50] Hopf E., “Abzweigung einer periodischen Losung von einer stationaren Losung eines Differentialsystems”, Ber. Math.-Phys. Kl. Sachs. Acad. Wiss. Leipzig., 94 (1942), 3–22 | MR