Limit sets of differential equations near singular critical points
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 119-128

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method of the study of dynamical systems near singular critical points, i.e., points in whose neighborhoods the vector field of the system cannot be expanded into a series. We apply methods of the theory of multidimensional topographic Poincaré systems for the search of attracting regimes in the system.
Keywords: dynamical system, singular critical point, limit cycle.
@article{INTO_2020_187_a9,
     author = {M. V. Shamolin},
     title = {Limit sets of differential equations near singular critical points},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {119--128},
     publisher = {mathdoc},
     volume = {187},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Limit sets of differential equations near singular critical points
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 119
EP  - 128
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/
LA  - ru
ID  - INTO_2020_187_a9
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Limit sets of differential equations near singular critical points
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 119-128
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/
%G ru
%F INTO_2020_187_a9
M. V. Shamolin. Limit sets of differential equations near singular critical points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 119-128. http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/