Limit sets of differential equations near singular critical points
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 119-128
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest a method of the study of dynamical systems near singular critical points, i.e., points in whose neighborhoods the vector field of the system cannot be expanded into a series. We apply methods of the theory of multidimensional topographic Poincaré systems for the search of attracting regimes in the system.
Keywords:
dynamical system, singular critical point, limit cycle.
@article{INTO_2020_187_a9,
author = {M. V. Shamolin},
title = {Limit sets of differential equations near singular critical points},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {119--128},
publisher = {mathdoc},
volume = {187},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/}
}
TY - JOUR AU - M. V. Shamolin TI - Limit sets of differential equations near singular critical points JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 119 EP - 128 VL - 187 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/ LA - ru ID - INTO_2020_187_a9 ER -
%0 Journal Article %A M. V. Shamolin %T Limit sets of differential equations near singular critical points %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 119-128 %V 187 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/ %G ru %F INTO_2020_187_a9
M. V. Shamolin. Limit sets of differential equations near singular critical points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 119-128. http://geodesic.mathdoc.fr/item/INTO_2020_187_a9/