Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_187_a8, author = {M. V. Shamolin}, title = {Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {82--118}, publisher = {mathdoc}, volume = {187}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/} }
TY - JOUR AU - M. V. Shamolin TI - Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 82 EP - 118 VL - 187 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/ LA - ru ID - INTO_2020_187_a8 ER -
%0 Journal Article %A M. V. Shamolin %T Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 82-118 %V 187 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/ %G ru %F INTO_2020_187_a8
M. V. Shamolin. Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 82-118. http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/
[1] Aidagulov R. R., Shamolin M. V., “Gruppy tsvetov”, Sovr. mat. prilozh., 62 (2009), 15–27
[2] Andronov A. A., Sobranie trudov, Izd-vo AN SSSR, M., 1956
[3] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. SSSR., 14:5 (1937), 247–250
[4] Beletskii V. V., Yanshin A. M., Vliyanie aerodinamicheskikh sil na vraschatelnoe dvizhenie iskusstvennykh sputnikov, Naukova dumka, Kiev, 1984
[5] Belyaev A. V., “O dvizhenii mnogomernogo tela s zakreplennoi tochkoi v pole sily tyazhesti”, Mat. sb., 114:3 (1981), 465–470 | MR
[6] Bendikson I., “O krivykh opredelyaemykh differentsialnymi uravneniyami”, Usp. mat. nauk., 9 (1941), 119–211
[7] Birkgof Dzh., Dinamicheskie sistemy, Gostekhizdat, M.-L., 1941
[8] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, Dokl. AN SSSR., 287:5 (1986), 1105–1108 | MR
[9] Brailov A. V., “Nekotorye sluchai polnoi integriruemosti uravnenii Eilera i prilozheniya”, Dokl. AN SSSR., 268:5 (1983), 1043–1046 | MR | Zbl
[10] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR
[11] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR
[12] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969
[13] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988
[14] Veselov A. P., “Ob usloviyakh integriruemosti uravnenii Eilera na $so(4)$”, Dokl. AN SSSR., 270:6 (1983), 1298–1300 | MR | Zbl
[15] Vishik S. V., Dolzhanskii S. F., “Analogi uravnenii Eilera–Puassona i magnitnoi gidrodinamiki, svyazannye s gruppami Li”, Dokl. AN SSSR., 238:5, 1032–1035 | MR | Zbl
[16] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN., 380:1 (2001), 47–50
[17] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN., 383:5 (2002), 635–637
[18] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbb{R}^{n}$”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 5 (2003), 37–41 | Zbl
[19] Georgievskii D. V., Shamolin M. V., “Valerii Vladimirovich Trofimov”, Sovr. mat. Fundam. napr., 23 (2007), 5–15 | MR
[20] Georgievskii D. V., Shamolin M. V., “Simvoly Levi-Chivity, obobschennye vektornye proizvedeniya i novye sluchai integriruemosti v mekhanike mnogomernogo tela”, Sovr. mat. prilozh., 76 (2012), 22–39
[21] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973
[22] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.-L., 1950 | MR
[23] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.-L., 1953 | MR
[24] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[25] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 3 (1995), 23–27
[26] Ivanova T. A., “Ob uravneniiya Eilera v modelyakh teoreticheskoi fiziki”, Mat. zametki., 52:2 (1992), 43–51
[27] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl
[28] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316 | Zbl
[29] Kuleshov A. S., Chernyakov G. A., “Issledovanie zadachi o dvizhenii tyazhelogo tela vrascheniya po absolyutno sherokhovatoi ploskosti s pomoschyu algoritma Kovachicha”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 145 (2018), 3–85
[30] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133
[31] Lyapunov A. M., “Novyi sluchai integriruemosti uravnenii dvizheniya tverdogo tela v zhidkosti”, Sobr. soch., v. I, Izd-vo AN SSSR, M., 1954, 320–324
[32] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. anal. prilozh., 10:4 (1976), 93–94 | MR | Zbl
[33] Okunev Yu. M., Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov kompleksnykh neavtonomnykh uravnenii”, Sovr. mat. prilozh., 65 (2009), 121–130
[34] Pokhodnya N. V., Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tela”, Vestn. SamGU. Estestvennonauch. ser., 9:100 (2012), 136–150 | Zbl
[35] Pokhodnya N. V., Shamolin M. V., “Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Vestn. SamGU. Estestvennonauch. ser., 9/1:110 (2013), 35–41 | Zbl
[36] Pokhodnya N. V., Shamolin M. V., “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. SamGU. Estestvennonauch. ser., 7:118 (2014), 60–69 | Zbl
[37] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (1989), 51–54 | Zbl
[38] Smeil S., “Differentsiruemye dinamicheskie sistemy”, Usp. mat. nauk., 25:1 (1970), 113–185 | MR
[39] Steklov V. A., O dvizhenii tverdogo tela v zhidkosti, Kharkov, 1893
[40] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199 | MR | Zbl
[41] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229
[42] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135
[43] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR
[44] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987
[45] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1 (1992), 52–58 | MR | Zbl
[46] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl
[47] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl
[48] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5 (1999), 627–629 | Zbl
[49] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN., 375:3 (2000), 343–346
[50] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 5 (2001), 22–28 | Zbl
[51] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $so(4)\times\mathbb{R}^{4}$”, Usp. mat. nauk., 60:6 (2005), 233–234 | MR | Zbl
[52] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN., 403:4 (2005), 482–485
[53] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl
[54] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237 | MR
[55] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 425:3 (2009), 338–342 | MR | Zbl
[56] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl
[57] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk., 65:1 (2010), 189–190 | MR | Zbl
[58] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 437:2 (2011), 190–193 | MR
[59] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 440:2 (2011), 187–190 | MR
[60] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 444:5 (2012), 506–509 | MR
[61] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR
[62] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 125 (2013), 3–251
[63] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 453:1 (2013), 46–49 | MR
[64] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl
[65] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 449:4 (2013), 416–419 | MR
[66] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v prostranstvennoi dinamike tverdogo tela v nekonservativnom pole sil”, Tr. semin. im. I. G. Petrovskogo, 30 (2014), 287–350
[67] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 457:5 (2014), 542–545 | MR
[68] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231
[69] Shamolin M. V., “Mnogomernyi mayatnik v nekonservativnom silovom pole”, Dokl. RAN., 460:2 (2015), 165–169 | MR
[70] Shamolin M. V., “Novyi sluchai polnoi integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (2015), 11–14 | Zbl
[71] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 461:5 (2015), 533–536 | MR
[72] Shamolin M. V., “Polnyi spisok pervykh integralov uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 464:6 (2015), 688–692 | MR
[73] Shamolin M. V., “Integriruemye nekonservativnye dinamicheskie sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Differ. uravn., 52:6 (2016), 743–759 | Zbl
[74] Shamolin M. V., “Integriruemye sistemy v dinamike na kasatelnom rassloenii k sfere”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2016, no. 2, 25–30 | Zbl
[75] Shamolin M. V., “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Tr. semin. im. I. G. Petrovskogo, 31 (2016), 257–323
[76] Shamolin M. V., “Mnogomernyi mayatnik v nekonservativnom silovom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 470:3 (2016), 288–292 | MR
[77] Shamolin M. V., “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernoi i trekhmernoi sferam”, Dokl. RAN., 471:5 (2016), 547–551 | MR
[78] Shamolin M. V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Chast 1”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 134 (2017), 6–128 | MR
[79] Shamolin M. V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Chast 2”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 135 (2017), 3–93 | MR
[80] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR
[81] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Dokl. RAN., 474:2 (2017), 177–181 | MR
[82] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172 | MR
[83] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN., 482:5 (2018), 527–533 | MR
[84] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN., 479:3 (2018), 270–276 | MR
[85] Shamolin M. V., “Novyi sluchai integriruemoi sistemy s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (2018), 34–43 | MR | Zbl
[86] Shamolin M. V., “Novye sluchai integriruemykh sistem pyatogo poryadka s dissipatsiei”, Dokl. RAN., 485:5 (2019), 583–587
[87] Tikhonov A. A., Tkhai V. N., “Symmetric oscillations of charged gyrostat in weakly elliptical orbit with small inclination”, Nonlinear Dynamics, 85:3 (2016), 1919–1927 | DOI