Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 82-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the study of integrable systems that describe multidimensional rigid bodies in nonconservative force fields, two approaches are used. The first approach is concerned with systems in which the nonconservativity of force fields is related to additional coefficients in the cinematical relations; note that $n=5$ and $n=6$ are special cases. The second approach is based on the simultaneous influence of two force fields: internal (conservative) and external (nonconservative). This paper is devoted to the special case where $n=5$.
Keywords: multidimensional rigid body, conservative force field, integrability, transcendental first integral.
Mots-clés : equations of motion
@article{INTO_2020_187_a8,
     author = {M. V. Shamolin},
     title = {Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {82--118},
     publisher = {mathdoc},
     volume = {187},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 82
EP  - 118
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/
LA  - ru
ID  - INTO_2020_187_a8
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 82-118
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/
%G ru
%F INTO_2020_187_a8
M. V. Shamolin. Examples of integrable equations of motion of a five-dimensional rigid body in the presence of internal and external force fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 82-118. http://geodesic.mathdoc.fr/item/INTO_2020_187_a8/

[1] Aidagulov R. R., Shamolin M. V., “Gruppy tsvetov”, Sovr. mat. prilozh., 62 (2009), 15–27

[2] Andronov A. A., Sobranie trudov, Izd-vo AN SSSR, M., 1956

[3] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. SSSR., 14:5 (1937), 247–250

[4] Beletskii V. V., Yanshin A. M., Vliyanie aerodinamicheskikh sil na vraschatelnoe dvizhenie iskusstvennykh sputnikov, Naukova dumka, Kiev, 1984

[5] Belyaev A. V., “O dvizhenii mnogomernogo tela s zakreplennoi tochkoi v pole sily tyazhesti”, Mat. sb., 114:3 (1981), 465–470 | MR

[6] Bendikson I., “O krivykh opredelyaemykh differentsialnymi uravneniyami”, Usp. mat. nauk., 9 (1941), 119–211

[7] Birkgof Dzh., Dinamicheskie sistemy, Gostekhizdat, M.-L., 1941

[8] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, Dokl. AN SSSR., 287:5 (1986), 1105–1108 | MR

[9] Brailov A. V., “Nekotorye sluchai polnoi integriruemosti uravnenii Eilera i prilozheniya”, Dokl. AN SSSR., 268:5 (1983), 1043–1046 | MR | Zbl

[10] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[11] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR

[12] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969

[13] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988

[14] Veselov A. P., “Ob usloviyakh integriruemosti uravnenii Eilera na $so(4)$”, Dokl. AN SSSR., 270:6 (1983), 1298–1300 | MR | Zbl

[15] Vishik S. V., Dolzhanskii S. F., “Analogi uravnenii Eilera–Puassona i magnitnoi gidrodinamiki, svyazannye s gruppami Li”, Dokl. AN SSSR., 238:5, 1032–1035 | MR | Zbl

[16] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN., 380:1 (2001), 47–50

[17] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN., 383:5 (2002), 635–637

[18] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbb{R}^{n}$”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 5 (2003), 37–41 | Zbl

[19] Georgievskii D. V., Shamolin M. V., “Valerii Vladimirovich Trofimov”, Sovr. mat. Fundam. napr., 23 (2007), 5–15 | MR

[20] Georgievskii D. V., Shamolin M. V., “Simvoly Levi-Chivity, obobschennye vektornye proizvedeniya i novye sluchai integriruemosti v mekhanike mnogomernogo tela”, Sovr. mat. prilozh., 76 (2012), 22–39

[21] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973

[22] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.-L., 1950 | MR

[23] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.-L., 1953 | MR

[24] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[25] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 3 (1995), 23–27

[26] Ivanova T. A., “Ob uravneniiya Eilera v modelyakh teoreticheskoi fiziki”, Mat. zametki., 52:2 (1992), 43–51

[27] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl

[28] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316 | Zbl

[29] Kuleshov A. S., Chernyakov G. A., “Issledovanie zadachi o dvizhenii tyazhelogo tela vrascheniya po absolyutno sherokhovatoi ploskosti s pomoschyu algoritma Kovachicha”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 145 (2018), 3–85

[30] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133

[31] Lyapunov A. M., “Novyi sluchai integriruemosti uravnenii dvizheniya tverdogo tela v zhidkosti”, Sobr. soch., v. I, Izd-vo AN SSSR, M., 1954, 320–324

[32] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. anal. prilozh., 10:4 (1976), 93–94 | MR | Zbl

[33] Okunev Yu. M., Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov kompleksnykh neavtonomnykh uravnenii”, Sovr. mat. prilozh., 65 (2009), 121–130

[34] Pokhodnya N. V., Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tela”, Vestn. SamGU. Estestvennonauch. ser., 9:100 (2012), 136–150 | Zbl

[35] Pokhodnya N. V., Shamolin M. V., “Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Vestn. SamGU. Estestvennonauch. ser., 9/1:110 (2013), 35–41 | Zbl

[36] Pokhodnya N. V., Shamolin M. V., “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. SamGU. Estestvennonauch. ser., 7:118 (2014), 60–69 | Zbl

[37] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (1989), 51–54 | Zbl

[38] Smeil S., “Differentsiruemye dinamicheskie sistemy”, Usp. mat. nauk., 25:1 (1970), 113–185 | MR

[39] Steklov V. A., O dvizhenii tverdogo tela v zhidkosti, Kharkov, 1893

[40] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199 | MR | Zbl

[41] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[42] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[43] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[44] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987

[45] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1 (1992), 52–58 | MR | Zbl

[46] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[47] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl

[48] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5 (1999), 627–629 | Zbl

[49] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN., 375:3 (2000), 343–346

[50] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 5 (2001), 22–28 | Zbl

[51] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $so(4)\times\mathbb{R}^{4}$”, Usp. mat. nauk., 60:6 (2005), 233–234 | MR | Zbl

[52] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN., 403:4 (2005), 482–485

[53] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[54] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237 | MR

[55] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 425:3 (2009), 338–342 | MR | Zbl

[56] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl

[57] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk., 65:1 (2010), 189–190 | MR | Zbl

[58] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 437:2 (2011), 190–193 | MR

[59] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 440:2 (2011), 187–190 | MR

[60] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 444:5 (2012), 506–509 | MR

[61] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR

[62] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 125 (2013), 3–251

[63] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 453:1 (2013), 46–49 | MR

[64] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl

[65] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 449:4 (2013), 416–419 | MR

[66] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v prostranstvennoi dinamike tverdogo tela v nekonservativnom pole sil”, Tr. semin. im. I. G. Petrovskogo, 30 (2014), 287–350

[67] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 457:5 (2014), 542–545 | MR

[68] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231

[69] Shamolin M. V., “Mnogomernyi mayatnik v nekonservativnom silovom pole”, Dokl. RAN., 460:2 (2015), 165–169 | MR

[70] Shamolin M. V., “Novyi sluchai polnoi integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (2015), 11–14 | Zbl

[71] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 461:5 (2015), 533–536 | MR

[72] Shamolin M. V., “Polnyi spisok pervykh integralov uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 464:6 (2015), 688–692 | MR

[73] Shamolin M. V., “Integriruemye nekonservativnye dinamicheskie sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Differ. uravn., 52:6 (2016), 743–759 | Zbl

[74] Shamolin M. V., “Integriruemye sistemy v dinamike na kasatelnom rassloenii k sfere”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2016, no. 2, 25–30 | Zbl

[75] Shamolin M. V., “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Tr. semin. im. I. G. Petrovskogo, 31 (2016), 257–323

[76] Shamolin M. V., “Mnogomernyi mayatnik v nekonservativnom silovom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 470:3 (2016), 288–292 | MR

[77] Shamolin M. V., “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernoi i trekhmernoi sferam”, Dokl. RAN., 471:5 (2016), 547–551 | MR

[78] Shamolin M. V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Chast 1”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 134 (2017), 6–128 | MR

[79] Shamolin M. V., “Malomernye i mnogomernye mayatniki v nekonservativnom pole. Chast 2”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 135 (2017), 3–93 | MR

[80] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR

[81] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Dokl. RAN., 474:2 (2017), 177–181 | MR

[82] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172 | MR

[83] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN., 482:5 (2018), 527–533 | MR

[84] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN., 479:3 (2018), 270–276 | MR

[85] Shamolin M. V., “Novyi sluchai integriruemoi sistemy s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (2018), 34–43 | MR | Zbl

[86] Shamolin M. V., “Novye sluchai integriruemykh sistem pyatogo poryadka s dissipatsiei”, Dokl. RAN., 485:5 (2019), 583–587

[87] Tikhonov A. A., Tkhai V. N., “Symmetric oscillations of charged gyrostat in weakly elliptical orbit with small inclination”, Nonlinear Dynamics, 85:3 (2016), 1919–1927 | DOI