Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_187_a7, author = {M. V. Shamolin}, title = {Examples of nine-order integrable dynamical systems with dissipation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {68--81}, publisher = {mathdoc}, volume = {187}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a7/} }
TY - JOUR AU - M. V. Shamolin TI - Examples of nine-order integrable dynamical systems with dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 68 EP - 81 VL - 187 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_187_a7/ LA - ru ID - INTO_2020_187_a7 ER -
%0 Journal Article %A M. V. Shamolin %T Examples of nine-order integrable dynamical systems with dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 68-81 %V 187 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_187_a7/ %G ru %F INTO_2020_187_a7
M. V. Shamolin. Examples of nine-order integrable dynamical systems with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 68-81. http://geodesic.mathdoc.fr/item/INTO_2020_187_a7/
[1] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^n$”, Dokl. RAN., 383:5 (2002), 635–637
[2] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[3] Dubrovin B. A., Novikov S. P., “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR., 219:2 (1984), 228–237
[4] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971
[5] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl
[6] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316 | Zbl
[7] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229
[8] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135
[9] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR
[10] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987
[11] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl
[12] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 4 (1996), 57–69 | MR | Zbl
[13] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl
[14] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl
[15] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237 | MR
[16] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 437:2 (2011), 190–193 | MR
[17] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR
[18] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory., 125 (2013), 5–254
[19] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231
[20] Shamolin M. V., “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernoi i trekhmernoi sferam”, Dokl. RAN., 471:5 (2016), 547–551 | MR
[21] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Dokl. RAN., 474:2 (2017), 177–181 | MR
[22] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN., 482:5 (2018), 527–533 | MR
[23] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN., 479:3 (2018), 270–276 | MR
[24] Shamolin M. V., “Novye sluchai integriruemykh sistem pyatogo poryadka s dissipatsiei”, Dokl. RAN., 485:5 (2019), 583–587
[25] Shamolin M. V., “Novye sluchai integriruemykh sistem sedmogo poryadka s dissipatsiei”, Dokl. RAN., 487:4 (2019), 381–386