Topographic Poincar\'e systems and comparison systems of small and high orders
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 50-67
Voir la notice de l'article provenant de la source Math-Net.Ru
On this work, we consider some qualitative questions of the theory of ordinary differential equations, on whose solutions a study of a series of dynamical systems depends. An elementary survey is given for such problems as qualitative questions of the theory of topographic Poincaré systems and more general comparison systems; problems of the existence and uniqueness of trajectories having infinitely distant points for flat systems as limit sets; elements of the qualitative theory of monotone vector fields.
Keywords:
dynamical system, topographic Poincaré system, comparison system, integrability.
@article{INTO_2020_187_a6,
author = {M. V. Shamolin},
title = {Topographic {Poincar\'e} systems and comparison systems of small and high orders},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {50--67},
publisher = {mathdoc},
volume = {187},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/}
}
TY - JOUR AU - M. V. Shamolin TI - Topographic Poincar\'e systems and comparison systems of small and high orders JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 50 EP - 67 VL - 187 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/ LA - ru ID - INTO_2020_187_a6 ER -
%0 Journal Article %A M. V. Shamolin %T Topographic Poincar\'e systems and comparison systems of small and high orders %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 50-67 %V 187 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/ %G ru %F INTO_2020_187_a6
M. V. Shamolin. Topographic Poincar\'e systems and comparison systems of small and high orders. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 50-67. http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/