Topographic Poincar\'e systems and comparison systems of small and high orders
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 50-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

On this work, we consider some qualitative questions of the theory of ordinary differential equations, on whose solutions a study of a series of dynamical systems depends. An elementary survey is given for such problems as qualitative questions of the theory of topographic Poincaré systems and more general comparison systems; problems of the existence and uniqueness of trajectories having infinitely distant points for flat systems as limit sets; elements of the qualitative theory of monotone vector fields.
Keywords: dynamical system, topographic Poincaré system, comparison system, integrability.
@article{INTO_2020_187_a6,
     author = {M. V. Shamolin},
     title = {Topographic {Poincar\'e} systems and comparison systems of small and high orders},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--67},
     publisher = {mathdoc},
     volume = {187},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Topographic Poincar\'e systems and comparison systems of small and high orders
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 50
EP  - 67
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/
LA  - ru
ID  - INTO_2020_187_a6
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Topographic Poincar\'e systems and comparison systems of small and high orders
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 50-67
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/
%G ru
%F INTO_2020_187_a6
M. V. Shamolin. Topographic Poincar\'e systems and comparison systems of small and high orders. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 50-67. http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/

[1] Bendikson I., “O krivykh, opredelyaemykh differentsialnymi uravneniyami”, Usp. mat. nauk., 9 (1941), 119–211

[2] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[3] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[4] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.-L., 1950 | MR

[5] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.-L., 1953 | MR

[6] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[8] Ivanova T. A., “Ob uravneniyakh Eilera v modelyakh teoreticheskoi fiziki”, Mat. zametki., 52:2 (1992), 43–51

[9] Kozlov V. V., “O padenii tyazhelogo tverdogo tela v idealnoi zhidkosti”, Izv. AN SSSR. Mekh. tv. tela., 5 (1989), 10–17

[10] Lamb G., Gidrodinamika, Fizmatgiz, M., 1947

[11] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, MGU, M., 1986

[12] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133

[13] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1967

[14] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947

[15] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (1989), 51–54 | Zbl

[16] Tabachnikov V. G., “Statsionarnye kharakteristiki krylev na malykh skorostyakh vo vsem diapazone uglov ataki”, Tr. TsAGI., v. 1621, M., 1974, 18–24

[17] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch, v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[18] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[19] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987

[20] Shamolin M. V., “Zamknutye traektorii razlichnogo topologicheskogo tipa v zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2 (1992), 52–56 | MR | Zbl

[21] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1 (1992), 52–58 | MR | Zbl

[22] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[23] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2 (1993), 66–70 | MR | Zbl

[24] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1 (1993), 68–71 | MR

[25] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN., 337:5 (1994), 611–614 | Zbl

[26] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 4 (1996), 57–69 | MR | Zbl

[27] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN., 349:2 (1996), 193–197 | Zbl

[28] Shamolin M. V., “Opredelenie otnositelnoi grubosti i dvuparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela”, Usp. mat. nauk., 51:1 (1996), 175–176 | MR | Zbl

[29] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | MR | Zbl

[30] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl

[31] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, Usp. mat. nauk., 54:5 (1999), 181–182 | MR | Zbl

[32] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 371:4 (2000), 480–483

[33] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Usp. mat. nauk., 55:3 (2000), 187–188 | MR | Zbl

[34] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Usp. mat. nauk., 57:1 (2002), 169–170 | MR

[35] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[36] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[37] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237 | MR

[38] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (2008), 43–49 | MR | Zbl

[39] Shamolin M. V., “Trekhparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 418:1 (2008), 46–51 | MR | Zbl

[40] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl

[41] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk., 65:1 (2010), 189–190 | MR | Zbl

[42] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (2011), 24–30 | Zbl

[43] Shamolin M. V., “Nekotorye voprosy kachestvennoi teorii v dinamike sistem s peremennoi dissipatsiei”, Sovr. mat. prilozh., 78 (2012), 138–147

[44] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR

[45] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl

[46] Yakobi K., Lektsii po dinamike, ONTI, M.-L., 1936