Topographic Poincar\'e systems and comparison systems of small and high orders
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 50-67

Voir la notice de l'article provenant de la source Math-Net.Ru

On this work, we consider some qualitative questions of the theory of ordinary differential equations, on whose solutions a study of a series of dynamical systems depends. An elementary survey is given for such problems as qualitative questions of the theory of topographic Poincaré systems and more general comparison systems; problems of the existence and uniqueness of trajectories having infinitely distant points for flat systems as limit sets; elements of the qualitative theory of monotone vector fields.
Keywords: dynamical system, topographic Poincaré system, comparison system, integrability.
@article{INTO_2020_187_a6,
     author = {M. V. Shamolin},
     title = {Topographic {Poincar\'e} systems and comparison systems of small and high orders},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--67},
     publisher = {mathdoc},
     volume = {187},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Topographic Poincar\'e systems and comparison systems of small and high orders
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 50
EP  - 67
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/
LA  - ru
ID  - INTO_2020_187_a6
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Topographic Poincar\'e systems and comparison systems of small and high orders
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 50-67
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/
%G ru
%F INTO_2020_187_a6
M. V. Shamolin. Topographic Poincar\'e systems and comparison systems of small and high orders. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 50-67. http://geodesic.mathdoc.fr/item/INTO_2020_187_a6/