Asymptotical enumeration of labeled series-parallel tetracyclic graphs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 31-35
Voir la notice de l'article provenant de la source Math-Net.Ru
A series-parallel graph is a graph that does not contain a complete graph with four vertices as a minor. We find an asymptotics for the number of labeled connected series-parallel tetracyclic graphs with a large number of vertices. We prove that under a uniform probability distribution, the probability of the fact that a labeled connected tetracyclic graph is a series-parallel graph is asymptotically equal to $141/221$.
Keywords:
enumeration, labeled graph, series-parallel graph, asymptotics, probability.
@article{INTO_2020_187_a3,
author = {V. A. Voblyi},
title = {Asymptotical enumeration of labeled series-parallel tetracyclic graphs},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {31--35},
publisher = {mathdoc},
volume = {187},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a3/}
}
TY - JOUR AU - V. A. Voblyi TI - Asymptotical enumeration of labeled series-parallel tetracyclic graphs JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 31 EP - 35 VL - 187 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_187_a3/ LA - ru ID - INTO_2020_187_a3 ER -
%0 Journal Article %A V. A. Voblyi %T Asymptotical enumeration of labeled series-parallel tetracyclic graphs %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 31-35 %V 187 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_187_a3/ %G ru %F INTO_2020_187_a3
V. A. Voblyi. Asymptotical enumeration of labeled series-parallel tetracyclic graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 31-35. http://geodesic.mathdoc.fr/item/INTO_2020_187_a3/