First-order covariant differential operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 19-30
Voir la notice de l'article provenant de la source Math-Net.Ru
An internal description of the class of all nonlinear differential operators of the first order on the space of collections consisting of continuously differentiable vector and scalar fields on $\mathbb{R}^3$ is given. Operators of this class are invariant with respect to translations of $\mathbb{R}^3$ and are transformed by the covariant way under rotations of $\mathbb{R}^3$.
Keywords:
first-order differential operator, divergence differential operator, vector field, pseudo-vector field, covariance.
@article{INTO_2020_187_a2,
author = {Yu. P. Virchenko and A. V. Subbotin},
title = {First-order covariant differential operators},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {19--30},
publisher = {mathdoc},
volume = {187},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/}
}
TY - JOUR AU - Yu. P. Virchenko AU - A. V. Subbotin TI - First-order covariant differential operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 19 EP - 30 VL - 187 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/ LA - ru ID - INTO_2020_187_a2 ER -
%0 Journal Article %A Yu. P. Virchenko %A A. V. Subbotin %T First-order covariant differential operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 19-30 %V 187 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/ %G ru %F INTO_2020_187_a2
Yu. P. Virchenko; A. V. Subbotin. First-order covariant differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 19-30. http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/