First-order covariant differential operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 19-30

Voir la notice de l'article provenant de la source Math-Net.Ru

An internal description of the class of all nonlinear differential operators of the first order on the space of collections consisting of continuously differentiable vector and scalar fields on $\mathbb{R}^3$ is given. Operators of this class are invariant with respect to translations of $\mathbb{R}^3$ and are transformed by the covariant way under rotations of $\mathbb{R}^3$.
Keywords: first-order differential operator, divergence differential operator, vector field, pseudo-vector field, covariance.
@article{INTO_2020_187_a2,
     author = {Yu. P. Virchenko and A. V. Subbotin},
     title = {First-order covariant differential operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {187},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. V. Subbotin
TI  - First-order covariant differential operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 19
EP  - 30
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/
LA  - ru
ID  - INTO_2020_187_a2
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. V. Subbotin
%T First-order covariant differential operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 19-30
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/
%G ru
%F INTO_2020_187_a2
Yu. P. Virchenko; A. V. Subbotin. First-order covariant differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 19-30. http://geodesic.mathdoc.fr/item/INTO_2020_187_a2/