Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_187_a1, author = {V. B. Vasilev (Vasilyev)}, title = {Fredholm operator manifolds}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {12--18}, publisher = {mathdoc}, volume = {187}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a1/} }
V. B. Vasilev (Vasilyev). Fredholm operator manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 12-18. http://geodesic.mathdoc.fr/item/INTO_2020_187_a1/
[1] Vasilev V. B., “Regulyarizatsiya mnogomernykh singulyarnykh integralnykh uravnenii v negladkikh oblastyakh”, Tr. Mosk. mat. o-va., 59 (1998), 72–105
[2] Vasilev V. B., “Psevdodifferentsialnye operatory i uravneniya peremennogo poryadka”, Differ. uravn., 54:9 (2018), 1184–1195
[3] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973
[4] Plamenevskii B. A., Algebry psevdodifferentsialnykh operatorov, Nauka, M., 1986 | MR
[5] Plamenevskii B. A., Rozenblyum G. V., “Psevdodifferentsialnye operatory s razryvnymi simvolami: K-teoriya i formuly indeksa”, Funkts. anal. prilozh., 26:4 (1992), 45–56 | MR
[6] Plamenevskii B. A., Senichkin V. N., “Razreshimye algebry operatorov”, Algebra i analiz., 6:5 (1994), 1–87 | MR
[7] Rempel Sh., Shultse B. V., Teoriya indeksa ellipticheskikh kraevykh zadach, Mir, M., 1983
[8] Simonenko I. B., Lokalnyi metod v teorii operatorov invariantnykh otnositelno sdviga i ikh ogibayuschikh, TsVVR, Rostov-na-Donu, 2007
[9] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973
[10] Dynin A., “Inversion problem for singular integral operators: $C^*$-approach”, Proc. Natl. Acad. Sci. U.S.A., 75 (1978), 4668–4670 | DOI | MR | Zbl
[11] Dynin A., “Multivariable Wiener–Hopf operators. I. Representations.”, Integral Equat. Oper. Theory., 9 (1986), 537–556 | DOI | MR | Zbl
[12] Dynin A., “Multivariable Wiener–Hopf operators. II. Spectral topology and solvability”, Integr. Equat. Oper. Theory., 10 (1987), 554–576 | DOI | MR | Zbl
[13] Egorov Yu. V., Schulze B. W., Pseudo-differential operators, singularities, applications, Birkhäuser-Verlag, Basel, 1997 | MR | Zbl
[14] Mikhlin S. G., Prößdorf S., Singular integral operators, Akademie-Verlag, Berlin, 1986 | MR
[15] Nazaikinskii V. E., Savin A. Yu., Schulze B. W., Sternin B. Yu., Elliptic theory on singular manifolds, Chapman Hall/CRC, Boca Raton, 2006 | MR | Zbl
[16] Schulze B. W., Boundary value problems and singular pseudo-differential operators, Wiley, Chichester, 1998 | MR | Zbl
[17] Schulze B. W., Sternin B., Shatalov V., Differential equations on singular manifolds; semiclassical theory and operator algebras, Wiley, Berlin, 1998 | MR | Zbl
[18] Vasil'ev V. B., Wave factorization of elliptic symbols: theory and applications. Introduction to the theory of boundary value problems in non-smooth domains, Kluwer Academic Publ., Dordrecht–Boston–London, 2000 | MR | Zbl
[19] Vasil'ev V. B., “Elliptic operators and their symbols”, Demonstr. Math., 52 (2019), 361–369 | DOI | MR