Fredholm operator manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 12-18

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider special classes of operators acting in functional spaces on manifolds. We can say that our approach is an operator-geometric treatment of the well-known local principle. In an abstract form, the conditions of the fredholmness are described and it is shown how these results can be applied to the study of elliptic pseudodifferential operators on manifolds with a non-smooth boundary.
Keywords: local operator, operator manifold, Fredholm property, index.
@article{INTO_2020_187_a1,
     author = {V. B. Vasilev (Vasilyev)},
     title = {Fredholm operator manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {12--18},
     publisher = {mathdoc},
     volume = {187},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_187_a1/}
}
TY  - JOUR
AU  - V. B. Vasilev (Vasilyev)
TI  - Fredholm operator manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 12
EP  - 18
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_187_a1/
LA  - ru
ID  - INTO_2020_187_a1
ER  - 
%0 Journal Article
%A V. B. Vasilev (Vasilyev)
%T Fredholm operator manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 12-18
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_187_a1/
%G ru
%F INTO_2020_187_a1
V. B. Vasilev (Vasilyev). Fredholm operator manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 187 (2020), pp. 12-18. http://geodesic.mathdoc.fr/item/INTO_2020_187_a1/