Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_186_a4, author = {T. V. Zhukovskaya and I. D. Serova}, title = {On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {38--44}, publisher = {mathdoc}, volume = {186}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/} }
TY - JOUR AU - T. V. Zhukovskaya AU - I. D. Serova TI - On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 38 EP - 44 VL - 186 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/ LA - ru ID - INTO_2020_186_a4 ER -
%0 Journal Article %A T. V. Zhukovskaya %A I. D. Serova %T On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 38-44 %V 186 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/ %G ru %F INTO_2020_186_a4
T. V. Zhukovskaya; I. D. Serova. On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 38-44. http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/
[1] Avakov E. R., Arutyunov A. V., Zhukovskii E. S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differ. uravn., 45:5 (2009), 613–634 | MR | Zbl
[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR
[3] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differ. uravn., 47:11 (2011), 1523–1537 | MR | Zbl
[4] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. RAN., 453:5 (2013), 475–478 | Zbl
[5] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “Tochki sovpadeniya mnogoznachnykh otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. RAN., 453:6 (2013), 595–598 | Zbl
[6] Danford N., Shvarts Dzh., Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962
[7] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differ. uravn., 52:12 (2016), 1605–1621
[8] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra anal., 30:1 (2018), 96–127
[9] Zhukovskii E. S., Pluzhnikova E. A., “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differ. uravn., 49:4 (2013), 439–455 | Zbl
[10] Prasolov V. V., Zadachi i teoremy lineinoi algebry, MTsNMO, M., 2015
[11] Serova I. D., “Ob otsenkakh resheniya neyavnogo funktsionalno-differentsialnogo uravneniya”, Prikl. mat. vopr. upravl., 2 (2017), 85–93
[12] Serova I. D., “O neyavnykh differentsialnykh neravenstvakh s otklonyayuschimsya argumentom”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 21:3 (2017), 571–578
[13] Serova I. D., “Ob otsenke resheniya kraevykh zadach dlya neyavnykh differentsialnykh uravnenii”, Vestn. RAEN., 19:2 (2019), 142–145
[14] Serova I. D., Repin A. A., “O suschestvovanii i otsenkakh reshenii neyavnogo differentsialnogo uravneniya s avtoreguliruemym otkloneniem argumenta”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 23:123 (2018), 566–574
[15] Shragin I. V., “Superpozitsionnaya izmerimost pri obobschennykh usloviyakh Karateodori”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 19:2 (2014), 476–478
[16] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for mappings in partially ordered spaces”, Topol. Appl., 179:1 (2015), 13–33 | DOI | MR | Zbl
[17] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topol. Appl., 201 (2016), 330–343 | DOI | MR | Zbl