On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 38-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-point boundary-value problem for an implicit differential equation with a deviating argument is examined. An existence theorem and an estimate for the solution are obtained, which is similar to the Chaplygin theorem on differential inequalities. We use results on equations with covering and monotonic mappings in partially ordered spaces and conditions for ordered covering of the Nemytskii operator in the space of measurable essentially bounded functions.
Keywords: implicit differential equation, boundary-value problem, solvability condition, estimate of solution, ordered covering mapping, differential inequality.
@article{INTO_2020_186_a4,
     author = {T. V. Zhukovskaya and I. D. Serova},
     title = {On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--44},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - I. D. Serova
TI  - On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 38
EP  - 44
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/
LA  - ru
ID  - INTO_2020_186_a4
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A I. D. Serova
%T On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 38-44
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/
%G ru
%F INTO_2020_186_a4
T. V. Zhukovskaya; I. D. Serova. On estimates of solutions of boundary-value problems for implicit differential equations with deviating argument. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 38-44. http://geodesic.mathdoc.fr/item/INTO_2020_186_a4/

[1] Avakov E. R., Arutyunov A. V., Zhukovskii E. S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differ. uravn., 45:5 (2009), 613–634 | MR | Zbl

[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[3] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differ. uravn., 47:11 (2011), 1523–1537 | MR | Zbl

[4] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. RAN., 453:5 (2013), 475–478 | Zbl

[5] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “Tochki sovpadeniya mnogoznachnykh otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. RAN., 453:6 (2013), 595–598 | Zbl

[6] Danford N., Shvarts Dzh., Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962

[7] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differ. uravn., 52:12 (2016), 1605–1621

[8] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra anal., 30:1 (2018), 96–127

[9] Zhukovskii E. S., Pluzhnikova E. A., “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differ. uravn., 49:4 (2013), 439–455 | Zbl

[10] Prasolov V. V., Zadachi i teoremy lineinoi algebry, MTsNMO, M., 2015

[11] Serova I. D., “Ob otsenkakh resheniya neyavnogo funktsionalno-differentsialnogo uravneniya”, Prikl. mat. vopr. upravl., 2 (2017), 85–93

[12] Serova I. D., “O neyavnykh differentsialnykh neravenstvakh s otklonyayuschimsya argumentom”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 21:3 (2017), 571–578

[13] Serova I. D., “Ob otsenke resheniya kraevykh zadach dlya neyavnykh differentsialnykh uravnenii”, Vestn. RAEN., 19:2 (2019), 142–145

[14] Serova I. D., Repin A. A., “O suschestvovanii i otsenkakh reshenii neyavnogo differentsialnogo uravneniya s avtoreguliruemym otkloneniem argumenta”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 23:123 (2018), 566–574

[15] Shragin I. V., “Superpozitsionnaya izmerimost pri obobschennykh usloviyakh Karateodori”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 19:2 (2014), 476–478

[16] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for mappings in partially ordered spaces”, Topol. Appl., 179:1 (2015), 13–33 | DOI | MR | Zbl

[17] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topol. Appl., 201 (2016), 330–343 | DOI | MR | Zbl