Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_186_a18, author = {L. G. Shagalova}, title = {Continuous generalized solution of the {Hamilton--Jacobi} equation with a noncoercive {Hamiltonian}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {144--151}, publisher = {mathdoc}, volume = {186}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/} }
TY - JOUR AU - L. G. Shagalova TI - Continuous generalized solution of the Hamilton--Jacobi equation with a noncoercive Hamiltonian JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 144 EP - 151 VL - 186 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/ LA - ru ID - INTO_2020_186_a18 ER -
%0 Journal Article %A L. G. Shagalova %T Continuous generalized solution of the Hamilton--Jacobi equation with a noncoercive Hamiltonian %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 144-151 %V 186 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/ %G ru %F INTO_2020_186_a18
L. G. Shagalova. Continuous generalized solution of the Hamilton--Jacobi equation with a noncoercive Hamiltonian. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 144-151. http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/
[1] Kruzhkov S. N, “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70 (112):3 (1966), 394–-415 | Zbl
[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR
[4] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona—Yakobi, Nauka, M., 1991
[5] Subbotina N. N., Shagalova L. G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona—Yakobi s fazovymi ogranicheniyami”, Tr. in-ta mat. mekh. UrO RAN., 17:2 (2011), 191–208 | MR
[6] Subbotina N. N., Shagalova L. G., “Postroenie obobschennogo resheniya uravneniya, sokhranyayuschego tip Bellmana v zadannoi oblasti fazovogo prostranstva”, Tr. Mat. in-ta im. V. A. Steklova RAN., 277 (2012), 243–256 | Zbl
[7] Subbotina N. N., Shagalova L. G., “O nepreryvnom prodolzhenii obobschennogo resheniya uravneniya Gamiltona—Yakobi kharakteristikami, obrazuyuschimi tsentralnoe pole ekstremalei”, Tr. in-ta mat. mekh. UrO RAN., 21:2 (2015), 220–235
[8] Capuzzo-Dolcetta I., Lions P. L., “Hamilton–Jacobi equations with state constraints”, Trans. Am. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl
[9] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 377:1 (1983), 1–42 | DOI | MR
[10] Ichihara N., Ishii H., “The large-time behavior of solutions of Hamilton–Jacobi equations on the real line”, Meth. Appl. Anal., 15:2 (2008), 223–242 | MR | Zbl
[11] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow–Kimura models for molecular evolution”, Phys. Rev. E., 78:4 (2008), 041908 | DOI | MR
[12] Shagalova L., “Applications of dynamic programming to generalized solutions for Hamilton–Jacobi equations with state constraints”, SOP Trans. Appl. Math., 1:2 (2014), 70–83 | DOI
[13] Subbotin A. I., Generalized Solutions of First Order Partial Differential Equations. The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR
[14] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Mod. Math. Appl., 20 (2004), 2955–3091 | MR
[15] Subbotina N. N., Shagalova L. G., “The study of evolution in the Crow–Kimura molecular genetics model using methods of calculus of variations”, AIP Conf. Proc., 1907:1 (2017), 020001 | DOI
[16] Yokoyama E., Giga Y., Rybka P., “A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation”, Phys. D: Nonlin. Phenom., 237 (2008), 2845-–2855 | DOI | MR | Zbl