Continuous generalized solution of the Hamilton--Jacobi equation with a noncoercive Hamiltonian
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 144-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the Cauchy problem for the Hamilton–Jacobi equation with phase constraints arising in molecular biology. The problem has no classical solutions, and the Hamiltonian does not satisfy the conditions guaranteeing the existence of minimax or viscous generalized solutions. A new continuous generalized solution is obtained. We present sufficient conditions for the existence of a global solution preserving the structure given by the initial manifold. The behavior of such solutions is examined for large values of time.
Keywords: Hamilton–Jacobi equation, noncoercive Hamiltonian, generalized solution, phase constraint, method of characteristics.
@article{INTO_2020_186_a18,
     author = {L. G. Shagalova},
     title = {Continuous generalized solution of the {Hamilton--Jacobi} equation with a noncoercive {Hamiltonian}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {144--151},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/}
}
TY  - JOUR
AU  - L. G. Shagalova
TI  - Continuous generalized solution of the Hamilton--Jacobi equation with a noncoercive Hamiltonian
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 144
EP  - 151
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/
LA  - ru
ID  - INTO_2020_186_a18
ER  - 
%0 Journal Article
%A L. G. Shagalova
%T Continuous generalized solution of the Hamilton--Jacobi equation with a noncoercive Hamiltonian
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 144-151
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/
%G ru
%F INTO_2020_186_a18
L. G. Shagalova. Continuous generalized solution of the Hamilton--Jacobi equation with a noncoercive Hamiltonian. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 144-151. http://geodesic.mathdoc.fr/item/INTO_2020_186_a18/

[1] Kruzhkov S. N, “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70 (112):3 (1966), 394–-415 | Zbl

[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR

[4] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona—Yakobi, Nauka, M., 1991

[5] Subbotina N. N., Shagalova L. G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona—Yakobi s fazovymi ogranicheniyami”, Tr. in-ta mat. mekh. UrO RAN., 17:2 (2011), 191–208 | MR

[6] Subbotina N. N., Shagalova L. G., “Postroenie obobschennogo resheniya uravneniya, sokhranyayuschego tip Bellmana v zadannoi oblasti fazovogo prostranstva”, Tr. Mat. in-ta im. V. A. Steklova RAN., 277 (2012), 243–256 | Zbl

[7] Subbotina N. N., Shagalova L. G., “O nepreryvnom prodolzhenii obobschennogo resheniya uravneniya Gamiltona—Yakobi kharakteristikami, obrazuyuschimi tsentralnoe pole ekstremalei”, Tr. in-ta mat. mekh. UrO RAN., 21:2 (2015), 220–235

[8] Capuzzo-Dolcetta I., Lions P. L., “Hamilton–Jacobi equations with state constraints”, Trans. Am. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl

[9] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 377:1 (1983), 1–42 | DOI | MR

[10] Ichihara N., Ishii H., “The large-time behavior of solutions of Hamilton–Jacobi equations on the real line”, Meth. Appl. Anal., 15:2 (2008), 223–242 | MR | Zbl

[11] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow–Kimura models for molecular evolution”, Phys. Rev. E., 78:4 (2008), 041908 | DOI | MR

[12] Shagalova L., “Applications of dynamic programming to generalized solutions for Hamilton–Jacobi equations with state constraints”, SOP Trans. Appl. Math., 1:2 (2014), 70–83 | DOI

[13] Subbotin A. I., Generalized Solutions of First Order Partial Differential Equations. The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR

[14] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Mod. Math. Appl., 20 (2004), 2955–3091 | MR

[15] Subbotina N. N., Shagalova L. G., “The study of evolution in the Crow–Kimura molecular genetics model using methods of calculus of variations”, AIP Conf. Proc., 1907:1 (2017), 020001 | DOI

[16] Yokoyama E., Giga Y., Rybka P., “A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation”, Phys. D: Nonlin. Phenom., 237 (2008), 2845-–2855 | DOI | MR | Zbl