Structures of a parabolic problem with transformation of a spatial variable
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 138-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear parabolic equation with transformation of the spatial variable and periodic conditions on the circle is considered. Using the method of separation of variables, we obtain properties of eigenfunctions and eigenvalues of the corresponding linearized problem. Using the method of central manifolds, we prove the existence and stability of spatially inhomogeneous stationary solutions. Based on the Galerkin method, we analyze approximate solutions of the original problem.
Mots-clés : parabolic equation, bifurcation
Keywords: method of central manifolds, stability, Galerkin method.
@article{INTO_2020_186_a17,
     author = {Yu. A. Khazova and Yu. D. Likhogrud},
     title = {Structures of a parabolic problem with transformation of a spatial variable},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {138--143},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a17/}
}
TY  - JOUR
AU  - Yu. A. Khazova
AU  - Yu. D. Likhogrud
TI  - Structures of a parabolic problem with transformation of a spatial variable
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 138
EP  - 143
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a17/
LA  - ru
ID  - INTO_2020_186_a17
ER  - 
%0 Journal Article
%A Yu. A. Khazova
%A Yu. D. Likhogrud
%T Structures of a parabolic problem with transformation of a spatial variable
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 138-143
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a17/
%G ru
%F INTO_2020_186_a17
Yu. A. Khazova; Yu. D. Likhogrud. Structures of a parabolic problem with transformation of a spatial variable. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 138-143. http://geodesic.mathdoc.fr/item/INTO_2020_186_a17/

[1] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., “Generatsiya struktur v opticheskikh sistemakh s dvumernoi obratnoi svyazyu: na puti k sozdaniyu nelineino-opticheskikh analogov neironnykh setei”, Novye fizicheskie printsipy opticheskoi obrabotki informatsii, Nauka, M., 1990, 263–325

[2] Khazova Yu. A., “Metaustoichivye struktury v parabolicheskoi zadache s otrazheniem prostranstvennoi peremennoi na otrezke”, Dinam. sist., 2:7 (35) (2017), 121–131

[3] Khazova Yu. A., “Integralnoe predstavlenie priblizhennykh reshenii parabolicheskogo uravneniya”, Aktualnye napravleniya nauchnykh issledovanii XXI v.: Teoriya i praktika., 6:6 (2018), 384–386

[4] Khazova Yu. A., Shiyan O. V., “Teorema o suschestvovanii i ustoichivosti resheniya odnogo parabolicheskogo uravneniya”, Dinam. sist., 3:8 (36) (2018), 275–280 | Zbl