Improving the efficiency of the learning process using the Markov model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 116-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Markovian model of learning consisting of three states: the state of knowledge transfer, the training state, and the state of knowledge control. Taking into account of training time within this model allows one to obtain additional information about competencies of trainees, to estimate the values of latent parameters, and to improve the learning process.
Keywords: training system, latent parameter, training, testing, mathematical model, Markov model, differential entropy, Rasch model.
@article{INTO_2020_186_a14,
     author = {V. I. Serbin},
     title = {Improving the efficiency of the learning process using the {Markov} model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {116--122},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a14/}
}
TY  - JOUR
AU  - V. I. Serbin
TI  - Improving the efficiency of the learning process using the Markov model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 116
EP  - 122
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a14/
LA  - ru
ID  - INTO_2020_186_a14
ER  - 
%0 Journal Article
%A V. I. Serbin
%T Improving the efficiency of the learning process using the Markov model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 116-122
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a14/
%G ru
%F INTO_2020_186_a14
V. I. Serbin. Improving the efficiency of the learning process using the Markov model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 116-122. http://geodesic.mathdoc.fr/item/INTO_2020_186_a14/

[2] Danilova S. D., Adaptivnaya nechetkaya model otsenivaniya rezultatov avtomatizirovannogo testirovaniya s razdeleniem zadanii po urovnyam usvoeniya, Diss. na soisk. uch. step. kand. tekhn. nauk., VSGTU, Ulan-Ude, 2005

[3] Lazarsfeld P. F., “Latentno-strukturnyi analiz i teoriya testov”, Matematicheskie metody v sotsialnykh naukakh, Progress, M., 1973, 42–53

[4] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966 | MR

[5] Neiman Yu. M, Khlebnikov V. A., Vvedenie v teoriyu modelirovaniya i parametrizatsiyu pedagogicheskikh testov, Prometei, M., 2000

[6] Novikov D. A., Teoriya upravleniya organizatsionnymi sistemami, MPSI, M., 2005

[7] Serbin V. I., “Metod rascheta parametrov v avtomatizirovannoi obuchayuschei sisteme”, Prikasp. zh. Upravl. vysokie tekhn., 2 (18) (2012), 66–70

[8] Serbin V. I., “Markovskaya model upravleniya protsessom obucheniya”, XII Vseross. sovesch. po probl. upravleniya VSPU-2014 (16–19 iyunya 2014 g., Moskva), In-t problem upravleniya im. V. A. Trapeznikova RAN, M., 2014, 9489–9497

[9] Solovov A. V., Elektronnoe obuchenie: Problematika, didaktika, tekhnologiya, Novaya tekhnika, Samara, 2006

[10] Kharchenko M. A., Korrelyatsionnyi analiz, Izd-vo VGU, Voronezh, 2008

[11] Rasch G., Probabilistic Models for Some Intelligence and Attainment Tests, Copenhagen, 1960

[12] Serbin V., “Markov model of evaluation of learning results”, Proc. 2018 Multidiscipl. Sympos. on Computer Science and ICT (Stavropol, Russia, October 15–19, 2018), v. 2254, CEUR Workshop Proceedings, 2018, 114–122