Multiple capture of a given number of evaders in L.~S.~Pontryagin's recurrent example
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 108-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized nonstationary Pontryagin example for a game with many players and the same dynamic and inertial capabilities of the players. We obtain sufficient conditions for the multiple capture of a given number of evaders by a group of pursuers, provided that the evaders use program strategies and each of the pursuers catches at most one evader.
Keywords: differential game, pursuer, evader, recurrent function.
@article{INTO_2020_186_a13,
     author = {N. N. Petrov and N. A. Solov'eva},
     title = {Multiple capture of a given number of evaders in {L.~S.~Pontryagin's} recurrent example},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {108--115},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a13/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - N. A. Solov'eva
TI  - Multiple capture of a given number of evaders in L.~S.~Pontryagin's recurrent example
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 108
EP  - 115
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a13/
LA  - ru
ID  - INTO_2020_186_a13
ER  - 
%0 Journal Article
%A N. N. Petrov
%A N. A. Solov'eva
%T Multiple capture of a given number of evaders in L.~S.~Pontryagin's recurrent example
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 108-115
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a13/
%G ru
%F INTO_2020_186_a13
N. N. Petrov; N. A. Solov'eva. Multiple capture of a given number of evaders in L.~S.~Pontryagin's recurrent example. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 108-115. http://geodesic.mathdoc.fr/item/INTO_2020_186_a13/

[6] Bannikov A. S., Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya”, Tr. In-ta mat. mekh. UrO RAN., 16:1 (2010), 40–51 | MR

[7] Blagodatskikh A. I., “O zadache gruppovogo presledovaniya v nestatsionarnom primere Pontryagina”, Vestn. Udmurt. un-ta. Ser. mat., 1 (2007), 17–24

[8] Blagodatskikh A. I., “Odnovremennaya mnogokratnaya poimka v zadache prostogo presledovaniya”, Prikl. mat. mekh., 73:1 (2009), 54–59 | MR | Zbl

[9] Blagodatskikh A. I., “Mnogokratnaya poimka v primere Pontryagina”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 2 (2009), 3–12

[10] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009

[11] Grigorenko N. L., “Igra prostogo presledovaniya-ubeganiya gruppy presledovatelei i odnogo ubegayuschego”, Vestn. MGU. Ser. vychisl. mat. kibern., 1 (1983), 41–47 | Zbl

[12] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo Mosk. un-ta, M., 1990

[13] Zubov V. I., “K teorii rekurrentnykh funktsii”, Sib. mat. zh., 3:4 (1962), 532–560 | MR | Zbl

[14] Petrov N. N., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Avtomat. telemekh., 6 (1996), 48–54 | Zbl

[15] Petrov N. N., “Mnogokratnaya poimka v primere L. S. Pontryagina s fazovymi ogranicheniyami”, Prikl. mat. mekh., 61:5 (1997), 747–754 | MR | Zbl

[16] Petrov N. N., Narmanov A. Ya., “Mnogokratnaya poimka zadannogo chisla ubegayuschikh v zadache prostogo presledovaniya”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 28:2 (2018), 193–198 | MR | Zbl

[17] Petrov N. N., Prokopenko V. A., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Differ. uravn., 23:4 (1987), 724–726

[18] Petrov N. N., Soloveva N. A., “K zadache gruppovogo presledovaniya v lineinykh rekurrentnykh differentsialnykh igrakh”, Sovr. mat. prilozh. Temat. obzory., 132 (2016), 81–85

[19] Pontryagin L. S., Izbrannye nauchnye trudy, Nauka, M., 1988

[20] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika., 3 (1976), 145–146

[21] Sakharov D. V., “O dvukh differentsialnykh igrakh prostogo gruppovogo presledovaniya”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 1 (2012), 50–59 | Zbl

[22] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[23] Chikrii A. A., Konfliktno upravlyaemye protsessy, Naukova dumka, Kiev, 1992