Discrete linear control problem with the ring-shaped terminal set in the presence of noise
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 102-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a discrete dynamic control system with noise. It is required that at the terminal moment of process the phase point is contained in a given ring-shaped set. We find the operator of program absorption, which allows one to formulate conditions for the set of initial positions that guarantee the fulfillment of the required inclusion at a given moment of time.
Keywords: discrete system, control problem, ring-shaped terminal set.
@article{INTO_2020_186_a12,
     author = {S. A. Nikitina and V. I. Ukhobotov},
     title = {Discrete linear control problem with the ring-shaped terminal set in the presence of noise},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {102--107},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a12/}
}
TY  - JOUR
AU  - S. A. Nikitina
AU  - V. I. Ukhobotov
TI  - Discrete linear control problem with the ring-shaped terminal set in the presence of noise
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 102
EP  - 107
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a12/
LA  - ru
ID  - INTO_2020_186_a12
ER  - 
%0 Journal Article
%A S. A. Nikitina
%A V. I. Ukhobotov
%T Discrete linear control problem with the ring-shaped terminal set in the presence of noise
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 102-107
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a12/
%G ru
%F INTO_2020_186_a12
S. A. Nikitina; V. I. Ukhobotov. Discrete linear control problem with the ring-shaped terminal set in the presence of noise. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 102-107. http://geodesic.mathdoc.fr/item/INTO_2020_186_a12/

[1] Izmestev I. V., Ukhobotov V. I., “Ob odnom podkhode k postroeniyu upravleniya pervogo igroka v odnotipnoi differentsialnoi igre s terminalnym mnozhestvom v forme koltsa”, Chelyabinsk. fiz.-mat. zh., 3:2 (2018), 144–152 | MR

[2] Nikitina S. A., Skorynin A. S., Ukhobotov V. I., “Ob odnoi zadache upravleniya diskretnoi sistemoi”, Chelyabinsk. fiz.-mat. zh., 3:3 (2018), 311–318 | MR

[3] Pontryagin L. S., “Lineinye differentsialnye igry, II”, Dokl. AN SSSR., 175:4 (1967), 764–766 | MR | Zbl

[4] Propoi A. I., Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973

[5] Ukhobotov V. I., “Odnotipnaya differentsialnaya igra s terminalnym mnozhestvom v forme koltsa”, Nekotorye zadachi dinamiki i upravleniya, Chelyabinsk. gos. un-t, Chelyabinsk, 2005, 108–123

[6] Ukhobotov V. I., Izmestev I. V., “Odnotipnaya zadacha impulsnoi vstrechi v zadannyi moment vremeni s terminalnym mnozhestvom v forme koltsa”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 25:2 (2015), 197–211 | Zbl

[7] Ukhobotov V. I., Izmestev I. V., “Sintez upravlenii v odnotipnoi igrovoi zadache impulsnoi vstrechi v zadannyi moment vremeni s terminalnym mnozhestvom v forme koltsa”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 27:1 (2017), 69–85 | MR | Zbl

[8] Ukhobotov V. I., Stabulit I. S., “Dinamicheskaya zadacha upravleniya pri nalichii pomekhi i s zadannym mnozhestvom momentov korrektsii”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 28:1 (2018), 74–81 | MR | Zbl

[9] Shorikov A. F., “Algoritm adaptivnogo minimaksnogo upravleniya dlya protsessa presledovaniya-ukloneniya v diskretnykh sistemakh”, Tr. in-ta mat. mekh. UrO RAN., 6:2 (2000), 515–535 | MR