On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 79-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider three nonlinear equations of the theory of magnets with gradient nonlinearities $|\nabla u|^q$, $\partial_t|\nabla u|^q$, and $\partial^2_t|\nabla u|^q $ are considered. For the corresponding Cauchy problems, we obtain results on local-in-time unique solvability in the weak sense and on blow-up for a finite time. These three equations have the same critical exponent $q=3/2$ since weak solutions behave differently for $1$ and for $q>3/2$. By the method of nonlinear capacity proposed by S. I. Pokhozhaev, we obtain a priori estimates, which imply the absence of local and global weak solutions.
Keywords: nonlinear Sobolev-type equation, blow-up, local solvability, nonlinear capacity, estimates of the blow-up time.
@article{INTO_2020_185_a8,
     author = {M. O. Korpusov and G. I. Shlyapugin},
     title = {On blow-up of solutions of the {Cauchy} problems for a class of nonlinear equations of ferrite theory},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {79--131},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a8/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - G. I. Shlyapugin
TI  - On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 79
EP  - 131
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a8/
LA  - ru
ID  - INTO_2020_185_a8
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A G. I. Shlyapugin
%T On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 79-131
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a8/
%G ru
%F INTO_2020_185_a8
M. O. Korpusov; G. I. Shlyapugin. On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 79-131. http://geodesic.mathdoc.fr/item/INTO_2020_185_a8/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[2] Gabov S. A., Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998

[3] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR

[4] Galakhov E. I., Salieva O. A., “Ob otsutstvii neotritsatelnykh monotonnykh reshenii dlya nekotorykh koertsitivnykh neravenstv v poluprostranstve”, Sovr. mat. Fundam. napr., 63:4 (2017), 573–585 | MR

[5] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1964

[6] Zagrebina S. A., “Nachalno-konechnaya zadacha dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Mat. zametki YaGU., 19:2 (2012), 39–48

[7] Kapitonov B. V., “Teoriya potentsiala dlya uravneniya malykh kolebanii vraschayuscheisya zhidkosti”, Mat. sb., 109 (151):4 (8) (1979), 607–628 | MR | Zbl

[8] Korpusov M. O., “Kriticheskie pokazateli mgnovennogo razrusheniya ili lokalnoi razreshimosti nelineinykh uravnenii sobolevskogo tipa”, Izv. RAN. Ser. mat., 79:5 (2015), 103–162 | MR | Zbl

[9] Korpusov M. O., “O razrushenii reshenii nelineinykh uravnenii tipa uravneniya Khokhlova—Zabolotskoi”, Teor. mat. fiz., 194:3 (2018), 403–417 | MR | Zbl

[10] Korpusov M. O., Panin A. A., Shishkov A. E., “O kriticheskom pokazatele «mgnovennoe razrushenie» versus «lokalnaya razreshimost» v zadache Koshi dlya modelnogo uravneniya sobolevskogo tipa”, Izv. RAN. Ser. mat., 85:1 (2021), 118–153 | MR | Zbl

[11] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O nestatsionarnykh volnakh v sredakh s anizotropnoi dispersiei”, Zh. vychisl. mat. mat. fiz., 39:6 (1999), 1006–1022 | MR | Zbl

[12] Panin A. A., “O lokalnoi razreshimosti i razrushenii resheniya abstraktnogo nelineinogo integralnogo uravneniya Volterra”, Mat. zametki., 97:6 (2015), 884–903 | Zbl

[13] Pletner Yu. D., “Fundamentalnye resheniya operatorov tipa Soboleva i nekotorye nachalno-kraevye zadachi”, Zh. vychisl. mat. mat. fiz., 32:12 (1992), 1885–1899 | MR | Zbl

[14] Pokhozhaev S. I., Mitidieri E., “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. Mat. in-ta im. V. A. Steklova., 234 (2001), 3–383

[15] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Usp. mat. nauk., 49:4 (1994), 47–74 | MR | Zbl

[16] Galakhov E. I., “Some nonexistence results for quasilinear elliptic problems”, J. Math. Anal. Appl., 252:1 (2000), 256–277 | DOI | MR | Zbl

[17] Korpusov M. O., Ovchinnikov A. V., Panin A. A., “Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field”, Math. Methods Appl. Sci., 41:17 (2018), 8070–8099 | DOI | MR | Zbl

[18] Zamyshlyaeva A. A., Sviridyuk G. A., “Nonclassical equations of mathematical physics. Linear Sobolev-type equations of higher order”, Vestn. YuUrGU. Ser. mat. mekh. fiz., 8:4 (2016), 5–16 | MR | Zbl