Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_185_a7, author = {A. V. Sekatskaya}, title = {On the nature of local bifurcations of the {Kuramoto--Sivashinsky} equation in various domains}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {72--78}, publisher = {mathdoc}, volume = {185}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/} }
TY - JOUR AU - A. V. Sekatskaya TI - On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 72 EP - 78 VL - 185 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/ LA - ru ID - INTO_2020_185_a7 ER -
%0 Journal Article %A A. V. Sekatskaya %T On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 72-78 %V 185 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/ %G ru %F INTO_2020_185_a7
A. V. Sekatskaya. On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 72-78. http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/
[4] Kremnievye nanostruktury. Fizika. Tekhnologiya. Modelirovanie, Izd-vo Indigo, Yaroslavl, 2014
[5] Kudryashov N. A., Ryabov P. N., Strikhanov M. N., “Chislennoe modelirovanie formirovaniya nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Yad. fiz. inzh., 2:1 (2010), 151–158
[6] Kulikov A. N., “Attraktory dvukh kraevykh zadach dlya modifitsirovannogo nelineinogo telegrafnogo uravneniya”, Nelin. dinam., 4:1 (2008), 57–68 | MR
[7] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl
[8] Kulikov A. N., Kulikov D. A., “Bifurkatsii prostranstvenno neodnorodnykh reshenii v dvukh kraevykh zadachakh dlya obobschennogo uravneniya Kuramoto—Sivashinskogo”, Vestn. MIFI., 3:4 (2014), 408–415 | MR
[9] Kulikov A. N., Kulikov D. A., “Uravnenie Kuramoto—Sivashinskogo. Lokalnyi attraktor, zapolnennyi neustoichivymi periodicheskimi resheniyami”, Model. anal. inform. sist., 1 (2018), 92–101
[10] Kulikov A. N., Kulikov D. A., Rudyi A. S., “Bifurkatsii nanostruktur pod vozdeistviem ionnoi bombardirovki”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 2011, no. 4, 86–99 | Zbl
[11] Kulikov D. A., Sekatskaya A. V., “O vliyanii geometricheskikh kharakteristik oblasti na strukturu nanorelefa”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 28:3 (2018), 293–304 | MR | Zbl
[12] Sekatskaya A. V., “Bifurkatsii prostranstvenno neodnorodnykh reshenii v odnoi kraevoi zadache dlya obobschennogo uravneniya Kuramoto—Sivashinskogo”, Model. anal. inform. sist., 5:24 (2017), 615–628 | MR
[13] Funktsionalnyi analiz. Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972
[14] Armsruster D., Guckenheimer J., Holmes Ph., “Kuramoto–Sivashinsky dynamics on the center-unstable manifold”, SIAM J. Appl. Math., 3:49 (1989), 676–691 | DOI | MR
[15] Barker B., Johnson M. A., Noble P., Zumbrun K., “Stability of periodic Kuramoto–Sivashinsky waves”, Appl. Math. Lett., 5:25 (2012), 824–829 | DOI | MR | Zbl
[16] Bradley R., Harper J., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Techn. A., 4:6 (1988), 2390–2395 | DOI
[17] Emel'yanov B. I., “The Kuramoto–Sivashinsky equation for the defect–deformation. Instability of a surface-stressed nanolayer”, Laser Phys., 3:19 (2009), 538–543 | DOI
[18] Gelfand M. P., Bradley R. M., “One-dimensional conservative surface dynamics with broken parity: Arrested collapse versus coarsening”, Phys. Lett. A., 4:1 (2015), 199–205 | DOI | MR
[19] Kulikov A. N., Kulikov D. A., “Bifurcation in a boundary-value problem of nanoelectronics”, J. Math. Sci., 208:2 (2015), 211–221 | DOI | MR | Zbl
[20] Kulikov A. N., Kulikov D. A., “Bifurcation in Kuramoto–Sivashinsky equation”, Pliska Stud. Math., 4:3 (2015), 101–110 | MR
[21] Kulikov A. N., Kulikov D. A., “Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation”, Automat. Remote Control., 78:11 (2017), 1955–1966 | DOI | MR | Zbl
[22] Kuramoto Y., Chemical Oscillations, Waves and Turbulence, Springer, Berlin, 1984 | MR | Zbl
[23] Nicolaenko B., Scheurer B., Temam R., “Some global dynamical properties of the Kuramoto–Sivashinsky equations: Nonlinear stability and attractors”, Phys. D., 16:2 (1985), 155-–183 | DOI | MR | Zbl
[24] Sivashinsky G. I., “Weak turbulence in periodic flow”, Phys. D., 2:17 (1985), 243–255 | DOI | MR