On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 72-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear parabolic partial differential equation in the case where the unknown function depends on two spatial variables and time, which is a generalization of the well-known Kuramoto–Sivashinsky equation. We consider homogeneous Dirichlet boundary-value problems for this equation. We examine local bifurcations when spatially homogeneous equilibrium states change stability. We show that post-critical bifurcations are realized in the boundary-value problems considered. We obtain asymptotic formulas for solutions and examine the stability of spatially inhomogeneous solutions.
Keywords: Kuramoto–Sivashinsky equation, boundary-value problem, equilibrium state, stability, Galerkin method, computer analysis.
@article{INTO_2020_185_a7,
     author = {A. V. Sekatskaya},
     title = {On the nature of local bifurcations of the {Kuramoto--Sivashinsky} equation in various domains},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {72--78},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/}
}
TY  - JOUR
AU  - A. V. Sekatskaya
TI  - On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 72
EP  - 78
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/
LA  - ru
ID  - INTO_2020_185_a7
ER  - 
%0 Journal Article
%A A. V. Sekatskaya
%T On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 72-78
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/
%G ru
%F INTO_2020_185_a7
A. V. Sekatskaya. On the nature of local bifurcations of the Kuramoto--Sivashinsky equation in various domains. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 72-78. http://geodesic.mathdoc.fr/item/INTO_2020_185_a7/