Bifurcations of spatially inhomogeneous solutions in a modified version of the Kuramoto--Sivashinsky equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 58-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic boundary-value problem for an equation with a deviating spatial argument is considered. Using the Poincaré–Dulac method of normal forms, the method of integral manifolds, and asymptotic formulas, we examine a number of bifurcation problems of codimension $1$ and $2$. For homogeneous equilibrium states, we analyze possibilities of realizing critical cases of various types. The problem on the stability of homogeneous equilibrium states is studied and asymptotic formulas for spatially inhomogeneous solutions and conditions for their stability are obtained.
Keywords: functional differential equation, periodic boundary-value problem, stability, asymptotics, Kuramoto–Sivashinsky equation.
Mots-clés : bifurcation
@article{INTO_2020_185_a6,
     author = {A. M. Kovaleva},
     title = {Bifurcations of spatially inhomogeneous solutions in a modified version of the {Kuramoto--Sivashinsky} equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--71},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a6/}
}
TY  - JOUR
AU  - A. M. Kovaleva
TI  - Bifurcations of spatially inhomogeneous solutions in a modified version of the Kuramoto--Sivashinsky equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 58
EP  - 71
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a6/
LA  - ru
ID  - INTO_2020_185_a6
ER  - 
%0 Journal Article
%A A. M. Kovaleva
%T Bifurcations of spatially inhomogeneous solutions in a modified version of the Kuramoto--Sivashinsky equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 58-71
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a6/
%G ru
%F INTO_2020_185_a6
A. M. Kovaleva. Bifurcations of spatially inhomogeneous solutions in a modified version of the Kuramoto--Sivashinsky equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 58-71. http://geodesic.mathdoc.fr/item/INTO_2020_185_a6/

[1] Kovaleva A. M., Kulikov A. N., Kulikov D. A., “Ustoichivost i bifurkatsii volnoobraznykh reshenii dlya odnogo funktsionalno-differentsialnogo uravneniya”, Izv. in-ta mat. i informat. Udmurt. gos. un-ta, 2:46 (2015), 60–68 | Zbl

[2] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, YarGU, Yaroslavl, 2005

[3] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753 | MR | Zbl

[4] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[5] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129

[6] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl

[7] Kulikov A. N., Kulikov D. A., “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Izv. in-ta mat. i informat. Udmurt. gos. un-ta, 28:3 (2015), 33–50 | MR

[8] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980

[9] Rudyi A. S., Bachurin V. I., “Prostranstvenno nelokalnaya model erozii poverkhnosti ionnoi bombardirovkoi”, Izv. RAN. Ser. fiz., 72:5 (2008), 624–629

[10] Rudyi A. S., Kulikov A. N., Metlitskaya A. V., “Modelirovanie protsessov formirovaniya nanostruktur pri raspylenii ionnoi bombardirovkoi”, Mikroelektronika., 40:2 (2011), 109–118

[11] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–350

[12] Bachurin V. I., Rudy A. S., Smirnov V. K., “Nanoscale Model of Surface Erosion by Ion Bombardment”, Radiat. Eff. Defects Solids., 161:6 (2006), 319–329 | DOI

[13] Bradley R. M., Harper J. M. F., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Techn. A., 6:4 (1988), 2390–2395 | DOI

[14] Kulikov A. N., Kulikov D. A., “Spatially inhomogeneous solutions for a modified Kuramoto–-Sivashinsky equation”, J. Math. Sci., 219:2 (2016), 173–183 | DOI | MR | Zbl

[15] Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984 | MR | Zbl

[16] Sigmund P., “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets”, Phys. Rev., 184:2 (1969), 383–416 | DOI

[17] Sigmund P., “A mechanism of surface micro-rougening by ion bombardment”, J. Math. Sci., 8 (1973), 1545 | DOI

[18] Syvashinsky G. I., “Weak Turbulence in Periodic Flow”, Phys. D. Nonlin. Phenom., 17:2 (1985), 243–255 | DOI | MR