On periodic solutions of the mathematical model ``politics-economics''
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 28-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a mathematical model “politics-economy” described by a nonlinear system of differential equations with a parameter and obtain conditions for the existence of a nonzero positive periodic solution.
Keywords: mathematical model, nonlinear system of differential equations with a parameter
Mots-clés : nonzero periodic solution.
@article{INTO_2020_185_a3,
     author = {O. V. Baeva and S. A. Pavlova},
     title = {On periodic solutions of the mathematical model  ``politics-economics''},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {28--36},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a3/}
}
TY  - JOUR
AU  - O. V. Baeva
AU  - S. A. Pavlova
TI  - On periodic solutions of the mathematical model  ``politics-economics''
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 28
EP  - 36
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a3/
LA  - ru
ID  - INTO_2020_185_a3
ER  - 
%0 Journal Article
%A O. V. Baeva
%A S. A. Pavlova
%T On periodic solutions of the mathematical model  ``politics-economics''
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 28-36
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a3/
%G ru
%F INTO_2020_185_a3
O. V. Baeva; S. A. Pavlova. On periodic solutions of the mathematical model  ``politics-economics''. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 28-36. http://geodesic.mathdoc.fr/item/INTO_2020_185_a3/

[1] Guts A. K., Korobitsyn V. V., Laptev A. A., Pautova L. A., Frolova Yu. V., Matematicheskie modeli sotsialnykh sistem, Omsk. gos. un-t, Omsk, 2000 | MR

[2] Terekhin M. T., “Bifurkatsiya periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, Izv. vuzov. Mat., 10 (449) (1999), 37–42 | Zbl

[3] Terekhin M. T., Baeva O. V., “Suschestvovanie nenulevykh periodicheskikh reshenii u osobogo klassa sistem differentsialnykh uravnenii s parametrom”, Vestn. Ryazansk. gos. un-ta im. S. A. Esenina., 3 (16) (2007), 77–98