Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_183_a9, author = {R. Yu. Leontiev}, title = {Minimal branches of solutions of nonlinear operator equations in {Banach} spaces}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {113--119}, publisher = {mathdoc}, volume = {183}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a9/} }
TY - JOUR AU - R. Yu. Leontiev TI - Minimal branches of solutions of nonlinear operator equations in Banach spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 113 EP - 119 VL - 183 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_183_a9/ LA - ru ID - INTO_2020_183_a9 ER -
%0 Journal Article %A R. Yu. Leontiev %T Minimal branches of solutions of nonlinear operator equations in Banach spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 113-119 %V 183 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_183_a9/ %G ru %F INTO_2020_183_a9
R. Yu. Leontiev. Minimal branches of solutions of nonlinear operator equations in Banach spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 113-119. http://geodesic.mathdoc.fr/item/INTO_2020_183_a9/
[1] Leontev R. Yu., “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii”, Nauka v vuzakh: Matematika, fizika, informatika. Problemy vysshego i srednego professionalnogo obrazovaniya, RUDN, M., 2009, 276–278
[2] Leontev R. Yu., “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii”, Vestn. Buryat. gos. un-ta. Mat. inform., 2009, no. 9, 77–83
[3] Leontev R. Yu., Sidorov N. A., “Uniformizatsiya i posledovatelnye priblizheniya reshenii nelineinykh uravnenii s vektornym parametrom”, Izv. Irkutsk. gos. un-ta. Mat., 4:3 (2011), 116–123 | MR | Zbl
[4] Leontev R. Yu., “O malykh resheniyakh nelineinykh operatornykh uravnenii s vektornym parametrom”, Mat. XII Mezhdunar. nauch.-tekhn. konf. «Matematicheskoe i kompyuternoe modelirovanie estestvenno-nauchnykh i sotsialnykh problem», Izd-vo PGU, Penza, 2018, 80–83
[5] Sidorov N. A., “Minimalnye vetvi reshenii nelineinykh uravnenii i asimptoticheskie regulyarizatory”, Nelin. granich. zadachi, 2004, no. 14, 161–164 | Zbl