Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_183_a8, author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova}, title = {On the problem of optimal control of dynamic systems in real time}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {98--112}, publisher = {mathdoc}, volume = {183}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/} }
TY - JOUR AU - R. Gabasov AU - N. M. Dmitruk AU - F. M. Kirillova TI - On the problem of optimal control of dynamic systems in real time JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 98 EP - 112 VL - 183 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/ LA - ru ID - INTO_2020_183_a8 ER -
%0 Journal Article %A R. Gabasov %A N. M. Dmitruk %A F. M. Kirillova %T On the problem of optimal control of dynamic systems in real time %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 98-112 %V 183 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/ %G ru %F INTO_2020_183_a8
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. On the problem of optimal control of dynamic systems in real time. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 98-112. http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/
[1] Balashevich N. V., “O stabilizatsii dinamicheskikh sistem ogranichennymi obratnymi svyazyami”, Tr. In-ta mat. NAN Belarusi., 1999, no. 3, 38–45 | MR | Zbl
[2] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie v realnom vremeni mnogomernym dinamicheskim ob'ektom”, Avtomat. telemekh., 2015, no. 1, 121–135 | Zbl
[3] Gabasov R., Kirillova F. M., Dmitruk N. M., “Sintez optimalnykh sistem — upravlenie v realnom vremeni”, Tr. Mezhdunar. konf. «Dinamika sistem i protsessy upravleniya», posv. 90-letiyu akademika N. N. Krasovskogo, 2015, 208–219
[4] Gabasov R., Kirillova F. M., Pavlenok N. S., “Optimalnoe upravlenie dinamicheskim ob'ektom po sovershennym izmereniyam ego sostoyanii”, Dokl. RAN., 444:4 (2012), 371–375 | Zbl
[5] Gabasov R., Kirillova F. M., Vo Tkhi Tan Kha, “Primenenie chislennykh metodov lineinogo programmirovaniya dlya upravleniya v realnom vremeni lineinym dinamicheskim ob'ektom”, Zh. vychisl. mat. mat. fiz., 56:3 (2016), 394–408 | Zbl
[6] Gabasov R., Kirillova F. M., “O nekotorykh problemakh optimalnogo upravleniya v realnom vremeni lineinymi statsionarnymi sistemami”, Izv. Irkutsk. un-ta. Ser. mat., 27 (2019), 15–27 | Zbl
[7] Gabasov R., Kirillova F. M., Poyasok E. I., “Optimalnoe upravlenie po nesovershennym izmereniyam vkhodnykh i vykhodnykh signalov dinamicheskim ob'ektom s mnozhestvennoi neopredelennostyu v nachalnom sostoyanii”, Zh. vychisl. mat. mat. fiz., 52:7 (2012), 1215–1230. | MR | Zbl
[8] Gabasov R., Kirillova F. M., Poyasok E. I., “Optimalnoe nablyudenie v realnom vremeni lineinogo dinamicheskogo ob'ekta”, Dokl. RAN., 448:3 (2013), 145–148 | Zbl
[9] Gabasov R., Kirillova F. M., Dmitruk N. M., “Optimalnoe detsentralizovannoe upravlenie dinamicheskimi sistemami v usloviyakh neopredelennosti”, Zh. vychisl. mat. mat. fiz., 51:7 (2011), 1209–1227 | MR | Zbl
[10] Gabasov R., Kirillova F. M., Dmitruk N. M., “Detsentralizovannoe upravlenie v lineino kvadratichnoi zadache pri nalichii zapazdyvaniya v informatsionnom kanale”, Dokl. NAN Belarusi., 60:3 (2016), 18–24 | MR | Zbl
[11] Gabasov R., Dmitruk N. M., Kirillova F. M., Poyasok E. I., “Zadachi optimalnogo upravleniya s podvizhnoi tselyu”, Tr. In-ta mat. mekh. UrO RAN., 16:5 (2010), 16–21
[12] Dmitruk N. M., “Optimalnoe upravlenie vzaimosvyazannymi ob'ektami”, Dinamika sistem i protsessy upravl., 2015, 147–154
[13] Christofides P. D., Scattolini R., de la Pena D. M., Liu J., “Distributed model predictive control: A tutorial review and future research directions”, Comput. Chem. Eng., 51 (2013), 21–41 | DOI | MR
[14] Gabasov R., Dmitruk N. M., Kirillova F. M., “On optimal control of an object at its approaching to moving target under uncertainty”, Appl. Comput. Math., 12:2 (2013), 152–167 | MR | Zbl
[15] Jia D., Krogh B., “Min-max feedback model predictive control for distributed control with communication”, Proc. 2002 Am. Control Conf., 6 (2002), 4507–4512
[16] Rawlings J.B., Mayne D.Q., Model predictive control: Theory and design, Nob Hill Publ., 2009