On the problem of optimal control of dynamic systems in real time
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 98-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of the results on the problem of optimal control in real time for linear systems, obtained by the Minsk school by mathematical methods of optimal control. We consider optimal control problems for dynamic objects, their deterministic mathematical models and perfect measurements of states, objects with disturbances and imperfect measurements of the observed input and output signals, the problem of optimal decentralized control of groups of interconnected dynamic objects, and application of real-time optimal control problems and the control principle to solving stabilization problems.
Keywords: optimal control, real-time control, uncertainty, imperfect measurements, decentralized control, stabilization, algorithm.
@article{INTO_2020_183_a8,
     author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
     title = {On the problem of optimal control of dynamic systems in real time},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {98--112},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - N. M. Dmitruk
AU  - F. M. Kirillova
TI  - On the problem of optimal control of dynamic systems in real time
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 98
EP  - 112
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/
LA  - ru
ID  - INTO_2020_183_a8
ER  - 
%0 Journal Article
%A R. Gabasov
%A N. M. Dmitruk
%A F. M. Kirillova
%T On the problem of optimal control of dynamic systems in real time
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 98-112
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/
%G ru
%F INTO_2020_183_a8
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. On the problem of optimal control of dynamic systems in real time. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 98-112. http://geodesic.mathdoc.fr/item/INTO_2020_183_a8/

[1] Balashevich N. V., “O stabilizatsii dinamicheskikh sistem ogranichennymi obratnymi svyazyami”, Tr. In-ta mat. NAN Belarusi., 1999, no. 3, 38–45 | MR | Zbl

[2] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie v realnom vremeni mnogomernym dinamicheskim ob'ektom”, Avtomat. telemekh., 2015, no. 1, 121–135 | Zbl

[3] Gabasov R., Kirillova F. M., Dmitruk N. M., “Sintez optimalnykh sistem — upravlenie v realnom vremeni”, Tr. Mezhdunar. konf. «Dinamika sistem i protsessy upravleniya», posv. 90-letiyu akademika N. N. Krasovskogo, 2015, 208–219

[4] Gabasov R., Kirillova F. M., Pavlenok N. S., “Optimalnoe upravlenie dinamicheskim ob'ektom po sovershennym izmereniyam ego sostoyanii”, Dokl. RAN., 444:4 (2012), 371–375 | Zbl

[5] Gabasov R., Kirillova F. M., Vo Tkhi Tan Kha, “Primenenie chislennykh metodov lineinogo programmirovaniya dlya upravleniya v realnom vremeni lineinym dinamicheskim ob'ektom”, Zh. vychisl. mat. mat. fiz., 56:3 (2016), 394–408 | Zbl

[6] Gabasov R., Kirillova F. M., “O nekotorykh problemakh optimalnogo upravleniya v realnom vremeni lineinymi statsionarnymi sistemami”, Izv. Irkutsk. un-ta. Ser. mat., 27 (2019), 15–27 | Zbl

[7] Gabasov R., Kirillova F. M., Poyasok E. I., “Optimalnoe upravlenie po nesovershennym izmereniyam vkhodnykh i vykhodnykh signalov dinamicheskim ob'ektom s mnozhestvennoi neopredelennostyu v nachalnom sostoyanii”, Zh. vychisl. mat. mat. fiz., 52:7 (2012), 1215–1230. | MR | Zbl

[8] Gabasov R., Kirillova F. M., Poyasok E. I., “Optimalnoe nablyudenie v realnom vremeni lineinogo dinamicheskogo ob'ekta”, Dokl. RAN., 448:3 (2013), 145–148 | Zbl

[9] Gabasov R., Kirillova F. M., Dmitruk N. M., “Optimalnoe detsentralizovannoe upravlenie dinamicheskimi sistemami v usloviyakh neopredelennosti”, Zh. vychisl. mat. mat. fiz., 51:7 (2011), 1209–1227 | MR | Zbl

[10] Gabasov R., Kirillova F. M., Dmitruk N. M., “Detsentralizovannoe upravlenie v lineino kvadratichnoi zadache pri nalichii zapazdyvaniya v informatsionnom kanale”, Dokl. NAN Belarusi., 60:3 (2016), 18–24 | MR | Zbl

[11] Gabasov R., Dmitruk N. M., Kirillova F. M., Poyasok E. I., “Zadachi optimalnogo upravleniya s podvizhnoi tselyu”, Tr. In-ta mat. mekh. UrO RAN., 16:5 (2010), 16–21

[12] Dmitruk N. M., “Optimalnoe upravlenie vzaimosvyazannymi ob'ektami”, Dinamika sistem i protsessy upravl., 2015, 147–154

[13] Christofides P. D., Scattolini R., de la Pena D. M., Liu J., “Distributed model predictive control: A tutorial review and future research directions”, Comput. Chem. Eng., 51 (2013), 21–41 | DOI | MR

[14] Gabasov R., Dmitruk N. M., Kirillova F. M., “On optimal control of an object at its approaching to moving target under uncertainty”, Appl. Comput. Math., 12:2 (2013), 152–167 | MR | Zbl

[15] Jia D., Krogh B., “Min-max feedback model predictive control for distributed control with communication”, Proc. 2002 Am. Control Conf., 6 (2002), 4507–4512

[16] Rawlings J.B., Mayne D.Q., Model predictive control: Theory and design, Nob Hill Publ., 2009