Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_183_a6, author = {V. S. Kedrin}, title = {Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {73--84}, publisher = {mathdoc}, volume = {183}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/} }
TY - JOUR AU - V. S. Kedrin TI - Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 73 EP - 84 VL - 183 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/ LA - ru ID - INTO_2020_183_a6 ER -
%0 Journal Article %A V. S. Kedrin %T Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 73-84 %V 183 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/ %G ru %F INTO_2020_183_a6
V. S. Kedrin. Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 73-84. http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/
[1] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999
[2] Danilov D. L., Zhiglyavskii A. A., Glavnye komponenty vremennykh ryadov: metod «gusenitsa», Nauka, M., 2004
[3] Doinikov A. N., Kedrin V. S., Salnikova M. K., “Modelirovanie nestatsionarnykh protsessov s ispolzovaniem algoritmov ikh singulyarnogo razlozheniya”, Nauch.-tekhn. ved. SPbGPU., 2006, no. 5, 143–147
[4] Kedrin V. S., Kuzmin O. V., “Rekurrentnye sootnosheniya additivnykh posledovatelnostei dlya periodicheskikh funktsii”, Probl. upravl., 2 (2015), 22–30
[5] Kedrin V. S., “Spektralnye metody analiza v zadachakh otsenki sostoyaniya slozhnykh energeticheskikh sistem”, Vestn. Irkutsk. reg. otd. Akad. nauk vysshei shkoly Rossii., 1:13 (2008), 193–198
[6] Kedrin V. S., Kuzmin O. V., “Chastotnyi analiz garmonicheskikh ryadov s pomoschyu otsenki singulyarnogo ranga”, Nauch.-tekhn. ved. SPbGPU. Informatika, telekommunikatsii i upravlenie., 2013, no. 4 (176), 47–54
[7] Kedrin V. S., Kuzmin O. V., “Metodika opredeleniya chastot periodicheskikh komponent vremennoi vyborki na osnovanii chislennogo $\varepsilon$-ranga”, Mat. V Vseukr. nauch.-prakt. konf. «Informatika i sistemnye nauki» (Poltava, 13-15 aprelya 2014 g.), PUET, Poltava, 2014, 141–145
[8] Kuzmin O. V., Kedrin V. S., Singulyarnoe razlozhenie v modelyakh diskretnykh posledovatelnostei, Izd-vo IGU, Irkutsk, 2014
[9] Kuzmin O. V., Kedrin V. S., “Analiz struktury garmonicheskikh ryadov dinamiki na baze algoritma singulyarnogo razlozheniya”, Probl. upravl., 1 (2013), 26–31
[10] Kuzmin O.V., Kedrin V. S., “Vydelenie ostsilliruyuschikh i trendovykh komponent na baze kriterialnoi modifikatsii singulyarnogo analiza”, Vestn. Sib. gos. aerokosmich. un-ta im. M. F. Reshetneva., 2012, no. 2 (128), 27–32
[11] Forsait Dzh., Moler K., Chislennoe reshenie sistem lineinykh algebraicheskikh uravnenii, Mir, M., 1969
[12] Golub G. H., Reinsch C., “Singular value decomposition and least squares solutions”, Handbook for Automatic Computation, II. Linear Algebra, Springer-Verlag, New York, 1971, 134–151 | DOI | MR