Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 73-84
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we discuss properties of the singular value decomposition (SVD-decomposition) within the framework of the analysis of the numerical rank in ill-posed problems for determining frequency properties of discrete sequences consisting of trigonometric binomials. The properties of the numerical rank of the SVD-decomposition are indicated. We propose an algorithm for determining the frequencies of trigonometric binomials involved in the original function that forms a discrete sequence; this algorithm is based on estimators of the numerical rank. We obtain a stable criterion for estimating the numerical rank based on the arithmetic-mean estimators of the pseudo-null-space of the trajectory matrix. Also, we present the results of numerical experiments that demonstrate the consistency of the arithmetic-mean estimator of the pseudo-zero-space for the analysis of the spectrum of noisy sequences.
Mots-clés :
singular value decomposition
Keywords: spectral analysis, numerical rank, ill-posed problem, analysis of frequency components.
Keywords: spectral analysis, numerical rank, ill-posed problem, analysis of frequency components.
@article{INTO_2020_183_a6,
author = {V. S. Kedrin},
title = {Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {73--84},
publisher = {mathdoc},
volume = {183},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/}
}
TY - JOUR AU - V. S. Kedrin TI - Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 73 EP - 84 VL - 183 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/ LA - ru ID - INTO_2020_183_a6 ER -
%0 Journal Article %A V. S. Kedrin %T Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 73-84 %V 183 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/ %G ru %F INTO_2020_183_a6
V. S. Kedrin. Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 73-84. http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/