Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_183_a6, author = {V. S. Kedrin}, title = {Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {73--84}, publisher = {mathdoc}, volume = {183}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/} }
TY - JOUR AU - V. S. Kedrin TI - Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 73 EP - 84 VL - 183 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/ LA - ru ID - INTO_2020_183_a6 ER -
%0 Journal Article %A V. S. Kedrin %T Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 73-84 %V 183 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/ %G ru %F INTO_2020_183_a6
V. S. Kedrin. Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 73-84. http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/