Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 73-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss properties of the singular value decomposition (SVD-decomposition) within the framework of the analysis of the numerical rank in ill-posed problems for determining frequency properties of discrete sequences consisting of trigonometric binomials. The properties of the numerical rank of the SVD-decomposition are indicated. We propose an algorithm for determining the frequencies of trigonometric binomials involved in the original function that forms a discrete sequence; this algorithm is based on estimators of the numerical rank. We obtain a stable criterion for estimating the numerical rank based on the arithmetic-mean estimators of the pseudo-null-space of the trajectory matrix. Also, we present the results of numerical experiments that demonstrate the consistency of the arithmetic-mean estimator of the pseudo-zero-space for the analysis of the spectrum of noisy sequences.
Mots-clés : singular value decomposition
Keywords: spectral analysis, numerical rank, ill-posed problem, analysis of frequency components.
@article{INTO_2020_183_a6,
     author = {V. S. Kedrin},
     title = {Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/}
}
TY  - JOUR
AU  - V. S. Kedrin
TI  - Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 73
EP  - 84
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/
LA  - ru
ID  - INTO_2020_183_a6
ER  - 
%0 Journal Article
%A V. S. Kedrin
%T Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 73-84
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/
%G ru
%F INTO_2020_183_a6
V. S. Kedrin. Estimation of the spectrum of discrete sequences in ill-posed problems based on the study of the numerical rank of the trajectory matrix. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 73-84. http://geodesic.mathdoc.fr/item/INTO_2020_183_a6/

[1] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[2] Danilov D. L., Zhiglyavskii A. A., Glavnye komponenty vremennykh ryadov: metod «gusenitsa», Nauka, M., 2004

[3] Doinikov A. N., Kedrin V. S., Salnikova M. K., “Modelirovanie nestatsionarnykh protsessov s ispolzovaniem algoritmov ikh singulyarnogo razlozheniya”, Nauch.-tekhn. ved. SPbGPU., 2006, no. 5, 143–147

[4] Kedrin V. S., Kuzmin O. V., “Rekurrentnye sootnosheniya additivnykh posledovatelnostei dlya periodicheskikh funktsii”, Probl. upravl., 2 (2015), 22–30

[5] Kedrin V. S., “Spektralnye metody analiza v zadachakh otsenki sostoyaniya slozhnykh energeticheskikh sistem”, Vestn. Irkutsk. reg. otd. Akad. nauk vysshei shkoly Rossii., 1:13 (2008), 193–198

[6] Kedrin V. S., Kuzmin O. V., “Chastotnyi analiz garmonicheskikh ryadov s pomoschyu otsenki singulyarnogo ranga”, Nauch.-tekhn. ved. SPbGPU. Informatika, telekommunikatsii i upravlenie., 2013, no. 4 (176), 47–54

[7] Kedrin V. S., Kuzmin O. V., “Metodika opredeleniya chastot periodicheskikh komponent vremennoi vyborki na osnovanii chislennogo $\varepsilon$-ranga”, Mat. V Vseukr. nauch.-prakt. konf. «Informatika i sistemnye nauki» (Poltava, 13-15 aprelya 2014 g.), PUET, Poltava, 2014, 141–145

[8] Kuzmin O. V., Kedrin V. S., Singulyarnoe razlozhenie v modelyakh diskretnykh posledovatelnostei, Izd-vo IGU, Irkutsk, 2014

[9] Kuzmin O. V., Kedrin V. S., “Analiz struktury garmonicheskikh ryadov dinamiki na baze algoritma singulyarnogo razlozheniya”, Probl. upravl., 1 (2013), 26–31

[10] Kuzmin O.V., Kedrin V. S., “Vydelenie ostsilliruyuschikh i trendovykh komponent na baze kriterialnoi modifikatsii singulyarnogo analiza”, Vestn. Sib. gos. aerokosmich. un-ta im. M. F. Reshetneva., 2012, no. 2 (128), 27–32

[11] Forsait Dzh., Moler K., Chislennoe reshenie sistem lineinykh algebraicheskikh uravnenii, Mir, M., 1969

[12] Golub G. H., Reinsch C., “Singular value decomposition and least squares solutions”, Handbook for Automatic Computation, II. Linear Algebra, Springer-Verlag, New York, 1971, 134–151 | DOI | MR