On the solvability of the Dirichlet problem for a multidimensional elliptic system in the half-space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 52-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for a multidimensional elliptic system in the half-space is considered. With the help of the Fourier transform, the problem of the solvability of the problem is reduced to the study of a second-order partial differential equation.
Keywords: multidimensional elliptic system, half-space, Dirichlet problem, Bessel function.
Mots-clés : Fourier transform
@article{INTO_2020_183_a4,
     author = {E. A. Golovko},
     title = {On the solvability of the {Dirichlet} problem for a multidimensional elliptic system in the half-space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {52--60},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a4/}
}
TY  - JOUR
AU  - E. A. Golovko
TI  - On the solvability of the Dirichlet problem for a multidimensional elliptic system in the half-space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 52
EP  - 60
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a4/
LA  - ru
ID  - INTO_2020_183_a4
ER  - 
%0 Journal Article
%A E. A. Golovko
%T On the solvability of the Dirichlet problem for a multidimensional elliptic system in the half-space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 52-60
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a4/
%G ru
%F INTO_2020_183_a4
E. A. Golovko. On the solvability of the Dirichlet problem for a multidimensional elliptic system in the half-space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 52-60. http://geodesic.mathdoc.fr/item/INTO_2020_183_a4/

[1] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981

[2] Vishik M. I., “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Mat. sb., 29:3 (1951), 615–676 | Zbl

[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[4] Yanushauskas A. I., Granichnye zadachi dlya uravnenii v chastnykh proizvodnykh i integro-differentsialnye uravneniya, Izd-vo Irkut. un-ta, Irkutsk, 1997

[5] Yanushauskas A. I., Zadacha o naklonnoi proizvodnoi teorii potentsiala, Nauka, Novosibirsk, 1985