Voir la notice du chapitre de livre
Mots-clés : convolution
@article{INTO_2020_183_a12,
author = {M. V. Falaleev},
title = {Generalized solutions of degenerate integro-differential equations in {Banach} spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {139--151},
year = {2020},
volume = {183},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/}
}
TY - JOUR AU - M. V. Falaleev TI - Generalized solutions of degenerate integro-differential equations in Banach spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 139 EP - 151 VL - 183 UR - http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/ LA - ru ID - INTO_2020_183_a12 ER -
%0 Journal Article %A M. V. Falaleev %T Generalized solutions of degenerate integro-differential equations in Banach spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 139-151 %V 183 %U http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/ %G ru %F INTO_2020_183_a12
M. V. Falaleev. Generalized solutions of degenerate integro-differential equations in Banach spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 139-151. http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/
[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969
[2] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979
[3] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii v chastnykh proizvodnykh i ikh prilozheniya, FAN, Tashkent, 1978, 133–148
[4] Falaleev M. V., Orlov S. S., “Integro-differentsialnye uravneniya s vyrozhdeniem v banakhovykh prostranstvakh i ikh prilozheniya v matematicheskoi teorii uprugosti”, Izv. Irkutsk. gos. un-ta. Ser. mat., 4:1 (2011), 118–134 | Zbl
[5] Falaleev M. V., “Vyrozhdennye integro-differentsialnye uravneniya tipa svertki v banakhovykh prostranstvakh”, Izv. Irkutsk. gos. un-ta. Ser. mat., 17 (2016), 77–85 | Zbl
[6] Falaleev M. V., “Teoriya fundamentalnykh operator-funktsii vyrozhdennykh integro-differentsialnykh operatorov v banakhovykh prostranstvakh i ikh prilozheniya”, Mat. VI Mezhdunar. konf. «Matematika, ee prilozheniya i matematicheskoe obrazovanie» (Ulan-Ude, 26 iyunya – 1 iyulya 2017 g.), Izd-vo VSGUTU, Ulan-Ude, 2017, 348–353
[7] Falaleev M. V., “Singulyarnye integro-differentsialnye uravneniya spetsialnogo vida v banakhovykh prostranstvakh i ikh prilozheniya”, Izv. Irkutsk. gos. un-ta. Ser. mat., 6:4 (2013), 128–137 | Zbl
[8] Fedorov V. E., Borel L. V., “Razreshimost nagruzhennykh lineinykh evolyutsionnykh uravnenii s vyrozhdennym operatorom pri proizvodnoi”, Algebra i analiz., 26:3 (2014), 190–205
[9] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl
[10] Falaleev M. V., “Fundamental operator-valued functions of singular integro-differential operators in Banach spaces”, Jour. Math. Sci., 230:5 (2018), 782–785 | DOI | MR | Zbl
[11] Falaleev M. V., “Generalized solutions of integro-differential equations of the viscoelaticity theory”, Proc. 1st Int. Conf. on Applied Sciences and Engineering 2019, FICASE 2019 (Ulaanbaatar, Mongolia, April 5-6, 2019), MUST, Ulaanbaatar, 2019, 42–45
[12] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publ., Dordrecht, 2002 | MR | Zbl