Generalized solutions of degenerate integro-differential equations in Banach spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 139-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a technique for constructing generalized solutions of the Cauchy problem for abstract integro-differential equations with degeneration in Banach spaces. A generalized solution is constructed as the convolution of the fundamental operator-function (fundamental solution, influence function) of the integro-differential operator of the equation with a generalized function of a special form, which involves all input data of the original problem. Based on the analysis of the representation for the generalized solution, we obtain sufficient solvability conditions for the original Cauchy problem in the class of functions of finite smoothness. Under these sufficient conditions, the generalized solution constructed turns out to be a classical solution with the required smoothness. The abstract results obtained in the paper are applied to the study of applied initial-boundary-value problems from the theory of oscillations in viscoelastic media.
Keywords: Banach space, Fredholm operator, generalized function, fundamental solution, resolvent, Cauchy–Dirichlet problem.
Mots-clés : convolution
@article{INTO_2020_183_a12,
     author = {M. V. Falaleev},
     title = {Generalized solutions of degenerate integro-differential equations in {Banach} spaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/}
}
TY  - JOUR
AU  - M. V. Falaleev
TI  - Generalized solutions of degenerate integro-differential equations in Banach spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 139
EP  - 151
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/
LA  - ru
ID  - INTO_2020_183_a12
ER  - 
%0 Journal Article
%A M. V. Falaleev
%T Generalized solutions of degenerate integro-differential equations in Banach spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 139-151
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/
%G ru
%F INTO_2020_183_a12
M. V. Falaleev. Generalized solutions of degenerate integro-differential equations in Banach spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 139-151. http://geodesic.mathdoc.fr/item/INTO_2020_183_a12/

[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[2] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979

[3] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii v chastnykh proizvodnykh i ikh prilozheniya, FAN, Tashkent, 1978, 133–148

[4] Falaleev M. V., Orlov S. S., “Integro-differentsialnye uravneniya s vyrozhdeniem v banakhovykh prostranstvakh i ikh prilozheniya v matematicheskoi teorii uprugosti”, Izv. Irkutsk. gos. un-ta. Ser. mat., 4:1 (2011), 118–134 | Zbl

[5] Falaleev M. V., “Vyrozhdennye integro-differentsialnye uravneniya tipa svertki v banakhovykh prostranstvakh”, Izv. Irkutsk. gos. un-ta. Ser. mat., 17 (2016), 77–85 | Zbl

[6] Falaleev M. V., “Teoriya fundamentalnykh operator-funktsii vyrozhdennykh integro-differentsialnykh operatorov v banakhovykh prostranstvakh i ikh prilozheniya”, Mat. VI Mezhdunar. konf. «Matematika, ee prilozheniya i matematicheskoe obrazovanie» (Ulan-Ude, 26 iyunya – 1 iyulya 2017 g.), Izd-vo VSGUTU, Ulan-Ude, 2017, 348–353

[7] Falaleev M. V., “Singulyarnye integro-differentsialnye uravneniya spetsialnogo vida v banakhovykh prostranstvakh i ikh prilozheniya”, Izv. Irkutsk. gos. un-ta. Ser. mat., 6:4 (2013), 128–137 | Zbl

[8] Fedorov V. E., Borel L. V., “Razreshimost nagruzhennykh lineinykh evolyutsionnykh uravnenii s vyrozhdennym operatorom pri proizvodnoi”, Algebra i analiz., 26:3 (2014), 190–205

[9] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl

[10] Falaleev M. V., “Fundamental operator-valued functions of singular integro-differential operators in Banach spaces”, Jour. Math. Sci., 230:5 (2018), 782–785 | DOI | MR | Zbl

[11] Falaleev M. V., “Generalized solutions of integro-differential equations of the viscoelaticity theory”, Proc. 1st Int. Conf. on Applied Sciences and Engineering 2019, FICASE 2019 (Ulaanbaatar, Mongolia, April 5-6, 2019), MUST, Ulaanbaatar, 2019, 42–45

[12] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publ., Dordrecht, 2002 | MR | Zbl