Optimal control problems for the bilinear system of special structure
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 130-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider three optimal control problems (linear, bilinear, and quadratic functionals) with respect to the special bilinear system with a matrix of rank $1$. For the first problem, we obtain two variants of conditions with respect to initial data of the system and functional such that the maximum principle becomes a sufficient optimality condition. In this case, the problem becomes very simple: the optimal control is determined in the integration process of the phase or conjugate system (one Cauchy problem). Then the optimization problem for a bilinear functional is considered. Sufficient optimality conditions for the boundary controls without switching points are obtained. These conditions are represented as inequalities for functions of one variable (time). The optimal control problem with the quadratic functional reduces to bilinear case on the basis of special increment formula.
Keywords: optimal control problem, bilinear system, maximum principle, sufficient conditions of optimality.
@article{INTO_2020_183_a11,
     author = {V. A. Srochko and V. G. Antonik and E. V. Aksenyushkina},
     title = {Optimal control problems for the bilinear system of special structure},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {130--138},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a11/}
}
TY  - JOUR
AU  - V. A. Srochko
AU  - V. G. Antonik
AU  - E. V. Aksenyushkina
TI  - Optimal control problems for the bilinear system of special structure
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 130
EP  - 138
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a11/
LA  - ru
ID  - INTO_2020_183_a11
ER  - 
%0 Journal Article
%A V. A. Srochko
%A V. G. Antonik
%A E. V. Aksenyushkina
%T Optimal control problems for the bilinear system of special structure
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 130-138
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a11/
%G ru
%F INTO_2020_183_a11
V. A. Srochko; V. G. Antonik; E. V. Aksenyushkina. Optimal control problems for the bilinear system of special structure. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 130-138. http://geodesic.mathdoc.fr/item/INTO_2020_183_a11/

[1] Antonik V. G., Srochko V. A., “Usloviya optimalnosti tipa printsipa maksimuma v bilineinykh zadachakh upravleniya”, Zh. vychisl. mat. mat. fiz., 56:12 (2016), 2054–2064 | MR | Zbl

[2] Khailov E. N., “Ob ekstremalnykh upravleniyakh odnorodnoi bilineinoi sistemy, upravlyaemoi v polozhitelnom ortante”, Tr. Mat. in-ta im. V. A. Steklova RAN., 220 (1998), 217–235

[3] Alessandro P. D., “Bilinearity and sensitivity in macroeconomy”, Lect. Notes Econ. Math. Syst., 111 (1975), 170–199 | DOI | MR | Zbl

[4] Oster G., “Bilinear models in ecology”, Lect. Notes Econ. Math. Syst., 162 (1978), 260–271 | DOI | MR | Zbl

[5] Perelson A. S., “Applications of optimal control theory to immunology”, Lect. Notes Econ. Math. Syst., 162 (1978), 272–287 | DOI | MR | Zbl

[6] V. Srochko, V. Antonik, and E. Aksenyushkina, “Sufficient optimality conditions for extremal controls based on functional increment formulas”, Num. Alg. Control Optim., 7:2 (2017), 191–199 | DOI | MR | Zbl

[7] Swierniak A., “Some control problems for simplest differential models of proliferation cycle”, Appl. Math. Comput. Sci., 4:2 (1994), 223–232 | MR | Zbl

[8] Swierniak A., “Cell cycle as an object of control”, J. Biol. Syst., 3:1 (1995), 41–54 | DOI