Generalized Legendre transform of conformally flat metrics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 55-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the calculus of variations, an important role is played by the Minkowski duality, or the Legendre transform of convex functions. We consider weakly regular, conformally flat Riemannian metrics of nonnegative curvature defined on the $n$-dimensional unit sphere. For this class of metrics, an analog of the Legendre transformation is introduced and studied in detail.
Mots-clés : Legendre transform
Keywords: conformally flat metric, Lobachevsky space.
@article{INTO_2020_182_a9,
     author = {M. V. Kurkina and E. D. Rodionov and S. P. Semenov and V. V. Slavskii},
     title = {Generalized {Legendre} transform of conformally flat metrics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {55--65},
     publisher = {mathdoc},
     volume = {182},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a9/}
}
TY  - JOUR
AU  - M. V. Kurkina
AU  - E. D. Rodionov
AU  - S. P. Semenov
AU  - V. V. Slavskii
TI  - Generalized Legendre transform of conformally flat metrics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 55
EP  - 65
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_182_a9/
LA  - ru
ID  - INTO_2020_182_a9
ER  - 
%0 Journal Article
%A M. V. Kurkina
%A E. D. Rodionov
%A S. P. Semenov
%A V. V. Slavskii
%T Generalized Legendre transform of conformally flat metrics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 55-65
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_182_a9/
%G ru
%F INTO_2020_182_a9
M. V. Kurkina; E. D. Rodionov; S. P. Semenov; V. V. Slavskii. Generalized Legendre transform of conformally flat metrics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 55-65. http://geodesic.mathdoc.fr/item/INTO_2020_182_a9/

[1] Balaschenko V. V., Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., Odnorodnye prostranstva: teoriya i prilozheniya, Poligrafist, Khanty-Mansiisk, 2008

[2] Kurkina M. V., Semenov S. P., Slavskii V. V., “Chislennaya realizatsiya preobrazovaniya Lezhandra konformno vypuklykh funktsii”, Sb. nauch. tr. mezhdunar. konf. «Lomonosovskie chteniya na Altae. Fundamentalnye problemy nauki i tekhniki» (Barnaul, 13-16 noyabrya 2018 g.), Altaiskii gosudarstvennyi universitet, Barnaul, 2018, 321–326

[3] Kurkina M. V., Rodionov E. D., Slavskii V. V., “Konformno vypuklye funktsii i konformno ploskie metriki neotritsatelnoi krivizny”, Dokl. RAN., 462:2 (2015), 141-–143 | Zbl

[4] Reshetnyak Yu. G., Teoremy ustoichivosti v geometrii i analize, Izd-vo In-ta mat. SO RAN, Novosibirsk, 1996 | MR

[5] Rodionov E. D., Slavskii V. V., “Odnomernaya sektsionnaya krivizna rimanovykh mnogoobrazii”, Dokl. RAN., 387:4 (2002), 454–457 | MR | Zbl

[6] Slavskii V. V., “Konformno ploskie metriki ogranichennoi krivizny na $n$-mernoi sfere”, Issledovaniya po geometrii «v tselom» i matematicheskomu analizu, Nauka, Novosibirsk, 1987, 183–199 | MR

[7] Slavskii V. V., “Konformno-ploskie metriki i psevdoevklidova geometriya”, Sib. mat. zh., 35:3 (1994), 674–682 | MR

[8] Toponogov V. A., Differentsialnaya geometriya krivykh i poverkhnostei, Fizmatkniga, M., 2012

[9] Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., “Geometry of homogeneoues Riemannian manifolds”, J. Math. Sci., 146:6 (2007), 6313–6390 | DOI | MR | Zbl