Tammes problem and contact number of a sphere in spaces of constant curvature
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 45-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem on the contact number of a sphere in a three-dimensional hyperbolic space and a three-dimensional spherical space.
Keywords: space of constant curvature, contact number
Mots-clés : Tammes problem.
@article{INTO_2020_182_a7,
     author = {A. V. Kostin and N. N. Kostina},
     title = {Tammes problem and contact number of a sphere in spaces of constant curvature},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {182},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a7/}
}
TY  - JOUR
AU  - A. V. Kostin
AU  - N. N. Kostina
TI  - Tammes problem and contact number of a sphere in spaces of constant curvature
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 45
EP  - 50
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_182_a7/
LA  - ru
ID  - INTO_2020_182_a7
ER  - 
%0 Journal Article
%A A. V. Kostin
%A N. N. Kostina
%T Tammes problem and contact number of a sphere in spaces of constant curvature
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 45-50
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_182_a7/
%G ru
%F INTO_2020_182_a7
A. V. Kostin; N. N. Kostina. Tammes problem and contact number of a sphere in spaces of constant curvature. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 45-50. http://geodesic.mathdoc.fr/item/INTO_2020_182_a7/

[1] | MR | Zbl

[2] Kostin A. V., “Zadacha o teni v prostranstve Lobachevskogo”, Ukr. mat. zh., 70:11 (2018), 1525–1532

[3] Kostin A. V., Kostina N. N., “Interpretatsii teoremy Kezi i ee giperbolicheskogo analoga”, Sib. elektron. mat. izv., 13 (2016), 242–-251 | MR | Zbl

[4] Levenshtein V. I., “O granitsakh dlya upakovok v $n$-mernom evklidovom prostranstve”, Dokl. AN SSSR., 245:6 (1979), 1299–1303 | MR | Zbl

[5] Anstreicher K., “The thirteen spheres: A new proof”, Discr. Comput. Geom., 31 (2004), 613–625 | DOI | MR | Zbl

[6] Bachoc C., Vallentin F., “New upper bounds for kissing numbers from semidefinite programming”, Discr. Comput. Geom., 21 (2008), 909–924 | MR | Zbl

[7] Böröczky K., “The problem of Tammes for $n=11$”, Stud. Sci. Math. Hungar., 18 (1983), 165–171 | MR | Zbl

[8] Böröczky K., “The Newton–Gregory problem revisited”, Discrete Geometry, ed. Bezdek A., Marcel Dekker, 2003, 103–110 | DOI | MR | Zbl

[9] Böröczky K., Szabó L., “Arrangements of 13 points on a sphere”, Discrete Geometry, ed. Bezdek A., Marcel Dekker, 2003, 111–184 | MR | Zbl

[10] Boyvalenkov P., Dodunekov S, Musin O. R., “A survey on the kissing number”, Serd. Math. J., 38 (2012), 507–522 | MR | Zbl

[11] Danzer L., Endliche Punktmengen auf der 2-Sphäre mit möglichst grossen Minimalabstand, Universität Göttingen, 1963

[12] Danzer L., “Finite point-sets on $\mathbb S^2$ with minimum distance as large as possible”, Discr. Math., 60 (1986), 3–66 | DOI | MR | Zbl

[13] Fejes Tóth L., “Über die Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems”, Jber. Deutsch. Math. Verein., 53 (1943), 66–68 | MR | Zbl

[14] Fejes Tóth L., Lagerungen in der Ebene, auf der Kugel und in Raum, Springer-Verlag, Berlin, 1953 | MR | Zbl

[15] Maehara H., “Isoperimetric theorem for spherical polygons and the problem of 13 spheres”, Ryukyu Math. J., 14 (2001), 1770–1778 | MR

[16] Maehara H., “The problem of thirteen spheres - a proof for undergraduates”, Eur. J. Combin., 28 (2007), 41–57 | DOI | MR

[17] Musin O. R., “The kissing problem in three dimensions”, Discr. Comput. Geom., 35 (2006), 375–384 | DOI | MR | Zbl

[18] Musin O. R., “The kissing problem in four dimensions”, Ann. Math., 168 (2008), 1–32 | DOI | MR | Zbl

[19] Musin O. R., Tarasov A. C., “The strong thirteen spheres problem”, Discr. Comput. Geom., 48 (2012), 128–141 | DOI | MR | Zbl

[20] Musin O. R., Tarasov A. C., The Tammes problem for $N = 14$, arXiv: 1410.2536 [math.MG] | MR

[21] Odlyzko A. M., Sloane N. J. A., “New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions”, J. Combin. Th. A., 26 (1979), 210–214 | DOI | MR | Zbl

[22] Pfender F., Ziegler G. M., “Kissing numbers, sphere packings, and some unexpected proofs”, Not. Am. Math. Soc., 51 (2004), 873–883 | MR | Zbl

[23] Robinson R. M., “Arrangement of 24 circles on a sphere”, Math. Ann., 144 (1961), 14–48 | DOI | MR

[24] Schütte K., Waerden, van der B. L., “Auf welcher Kugel haben 5, 6, 7,8 oder 9 Punkte mit Mindestabstand 1 Platz?”, Math. Ann., 123 (1951), 96–124 | DOI | MR | Zbl

[25] Schütte K., van der Waerden B. L., “Das Problem der dreizehn Kugeln”, Math. Ann., 125 (1953), 325–334 | DOI | MR | Zbl

[26] Tammes R. M. L., “On the origin number and arrangement of the places of exits on the surface of pollen-grains”, Rec. Trv. Bot. Neerl., 27 (1930), 1–84