Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_182_a3, author = {I. Hinterleitner and N. I. Guseva and J. Mike\v{s}}, title = {On geodesic definiteness by similarity points}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {19--27}, publisher = {mathdoc}, volume = {182}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a3/} }
TY - JOUR AU - I. Hinterleitner AU - N. I. Guseva AU - J. Mikeš TI - On geodesic definiteness by similarity points JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 19 EP - 27 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_182_a3/ LA - ru ID - INTO_2020_182_a3 ER -
%0 Journal Article %A I. Hinterleitner %A N. I. Guseva %A J. Mikeš %T On geodesic definiteness by similarity points %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 19-27 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_182_a3/ %G ru %F INTO_2020_182_a3
I. Hinterleitner; N. I. Guseva; J. Mikeš. On geodesic definiteness by similarity points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 19-27. http://geodesic.mathdoc.fr/item/INTO_2020_182_a3/
[1] Berezovskii V. E., Guseva N. I., Mikesh I., “O chastnom sluchae pochti geodezicheskikh otobrazhenii pervogo tipa prostranstv affinnoi svyaznosti, pri kotorom sokhranyaetsya nekotoryi tenzor”, Mat. zametki., 98:3 (2015), 463–466 | MR | Zbl
[2] Berezovskii V. E., Ginterleitner I., Guseva N. I., Mikesh I., “Konformnye otobrazheniya rimanovykh prostranstv na Richchi simmetricheskie prostranstva”, Mat. zametki., 103:2 (2018), 303–306 | MR | Zbl
[3] Evtushik L. E., Ginterleitner I., Guseva N. I., Mikesh I., “Konformnye otobrazheniya na prostranstva Einshteina”, Izv. vuzov. Mat., 2016, no. 10, 8–13 | MR | Zbl
[4] Kagan V. F., Osnovy teorii poverkhnostei. T. 1, 2, OGIZ, M.-L., 1947–1948
[5] Mikesh I., “O suschestvovanii $n$-mernykh kompaktnykh prostranstv, dopuskayuschikh netrivialnykh geodezicheskikh otobrazhenii «v tselom»”, Dokl. AN SSSR., 305 (1989), 534–536 | MR | Zbl
[6] Mikesh I., Ginterleitner I., “Ob odnom variatsionnom svoistve geodezicheskikh v rimanovykh i finslerovykh prostranstvakh”, Vestn. Tver. un-ta. Ser. Prikl. mat., 8 (2008), 59–63
[7] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956
[8] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966
[9] Sinyukov N. S., “Ob odnom invariantnom preobrazovanii rimanovykh prostranstv s obschimi geodezicheskimi”, Dokl. AN SSSR., 137:6 (1961), 1312–1314 | MR | Zbl
[10] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR
[11] Sinyukova E. N., “O geodezicheskikh otobrazheniyakh nekotorykh spetsialnykh rimanovykh prostranstv”, Mat. zametki., 30:6 (1981), 889–894 | MR | Zbl
[12] Stepanov S. E., “K globalnoi teorii proektivnykh otobrazhenii”, Mat. zametki., 58:1 (1995), 111–118 | MR | Zbl
[13] Shirokov P. A., Izbrannye raboty po geometrii, Izd. Kazansk. un-ta, Kazan, 1966 | MR
[14] Fomenko V. T., “Ob odnoznachnoi opredelennosti zamknutykh poverkhnostei otnositelno geodezicheskikh otobrazhenii”, Dokl. RAN., 407:4 (2006), 453–456 | MR | Zbl
[15] Afwat M., Švec A., “Global differential geometry of hypersurfaces”, Rozpr. Česk. Akad. Věd, Řada Mat. Pří{r}. Věd., 88:7 (1978), 75 | MR | Zbl
[16] Chudá H., Mikeš J., “First quadratic integral of geodesics with certain initial conditions”, APLIMAT, 2007, 85–88
[17] Chudá H., Mikeš J., “Conformally geodesic mappings satisfying a certain initial condition”, Arch. Math. (Brno)., 47 (2011), 389–394 | MR | Zbl
[18] Ćirić M., Zlatanović M., Stanković M., Velimirović Lj., “On geodesic mappings of equidistant generalized Riemannian spaces”, Appl. Math. Comput., 218 (2012), 6648–6655 | DOI | MR | Zbl
[19] Dini U., “On a problem in the general theory of the geographical representations of a surface on another”, Anali di Mat., 3 (1869), 269–294 | DOI
[20] Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press, 1926 | MR | Zbl
[21] Formella S., Mikeš J., “Geodesic mappings of Einstein spaces”, Ann. Sci. Stet., 9 (1994), 31–40 | MR
[22] Hall G., “Projective structure in space-times. Adv. in Lorentzian Geometry”, AMS/IP Stud. Adv. Math., 49 (2011), 71–79 | DOI | MR | Zbl
[23] Hinterleitner I., “Conformally-projective harmonic diffeomorphisms of equidistant manifolds”, Publ. de la RSME., 11 (2007), 298–303 | MR | Zbl
[24] Hinterleitner I., Mikeš J., “On the equations of conformally-projective harmonic mappings”, AIP Conf. Proc., 956 (2007), 141–148 | DOI | MR | Zbl
[25] Hinterleitner I., “Special mappings of equidistant spaces”, J. Appl. Math., 2 (2008), 31–36
[26] Hinterleitner I., Mikeš J., “Projective equivalence and spaces with equi-affine connection”, J. Math. Sci., 177 (2011), 546–550 | DOI | MR | Zbl
[27] Hinterleiner I., Mikeš J., “Fundamental equations of geodesic mappings and their generalizations”, J. Math. Sci., 174 (2011), 537–554 | DOI | MR
[28] Hinterleitner I., “On global geodesic mappings of ellipsoids”, AIP Conf. Proc., 1460 (2012), 180–184 | DOI
[29] Hinterleitner I., “Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature”, Publ. Inst. Math., 94 (108) (2013), 125–130 | DOI | MR | Zbl
[30] Hinterleiner I., Mikeš J., “Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability”, Miskolc Math. Notes., 14 (2013), 89–96 | DOI | MR
[31] Hinterleitner I., Mikeš J., “Geodesic mappings and Einstein spaces”, Geometric Methods in Physics, Birkhäuser–Springer, Basel, 2013, 331–335 | DOI | MR | Zbl
[32] Hinterleitner I., Mikeš J., “Geodesic mappings and differentiability of metrics, affine and projective connections”, Filomat., 29 (2015), 1245–1249 | DOI | MR | Zbl
[33] Hinterleiner I., Mikeš J., “Geodesic mappings onto Riemannian manifolds and differentiability”, Geometry, Integrability and Quantization XVIII, Bulgar. Acad. Sci., Sofia, 2017, 183–190 | DOI | MR
[34] Kuzmina I., Mikeš J., “On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of them”, Ann. Math. Inform., 42 (2013), 57–64 | MR | Zbl
[35] Levi-Civita T., “Sulle trasformazioni dello equazioni dinamiche”, Ann. Mat. Milano., 24 (1896), 255–300 | Zbl
[36] Lagrange J. L., “Sur la construction des cartes géographiques”, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin, 1779, no. 4, 637–692
[37] Mikeš J., “On existence of nontrivial global geodesic mappings on $n$-dimensional compact surfaces of revolution”, Proc. Conf. “Differential Geometry and Its Applications” (Brno, 1989), World Scientific, 1990, 129–137 | MR | Zbl
[38] Mikeš J., “Global geodesic mappings and their generalizations for compact Riemannian spaces”, Silesian Univ. Math. Publ., 1 (1993), 143–149 | MR | Zbl
[39] Mikeš J., “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78 (1996), 311–333 | DOI | MR | Zbl
[40] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic Mappings and Some Generalizations, Palacky Univ. Press, Olomouc, 2009 | MR | Zbl
[41] Mikeš J. et al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, 2015 | MR | Zbl
[42] Mikeš J., Berezovski V., “Geodesic mappings of affine-connected spaces onto Riemannian spaces”, Colloq. Math. Soc. J. Bolyai., 56 (1992), 491–494 | MR | Zbl
[43] Mikeš J., Berezovski V., Stepanova E., Chudá H., “Geodesic mappings and their generalizations”, J. Math. Sci., 217:5 (2016), 607–623 | DOI | MR | Zbl
[44] Mikeš J., Chudá H., “On geodesic mappings with certain initial conditions”, Acta Math. Acad. Paedagog. Nyházi., 26 (2010), 337–341 | MR | Zbl
[45] Mikeš J., Chudá H., Hinterleitner I., “Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition”, Int. J. Geom. Meth. Mod. Phys., 11:5 (2014), 1450044 | DOI | MR | Zbl
[46] Najdanović M., Zlatanović M., Hinterleitner I., “Conformal and geodesic mappings of generalized equidistant spaces”, Publ. Inst. Math. Beograd., 98 (112) (2015), 71–84 | DOI | MR | Zbl
[47] Rýparová L., Mikeš J., “On global geodesic mappings of quadrics of revoution”, Proc. 16th Conf. APLIMAT 2017, 2017, 1342–1348 | MR
[48] Rýparová L., Mikeš J., “On geodesic bifurcations”, Geometry, Integrability and Quantization XVIII, Bulgar. Acad. Sci., Sofia, 2017, 217–224 | DOI | MR | Zbl
[49] Rýparová L., Mikeš J., “Bifurcation of closed geodesics”, Geometry, Integrability and Quantization XIX, Bulgar. Acad. Sci., Sofia, 2018, 188–192 | DOI | MR | Zbl
[50] Rýparová L., Mikeš J., “On geodesic bifurcations of product spaces”, J. Math. Sci., 239:1 (2019), 86–91 | DOI | MR | Zbl
[51] Stanković M., Mincić S., Velimirović Lj., Zlatanović M., “On equitorsion geodesic mappings of general affine connection spaces”, Rend. Semin. Mat. Univ. Padova., 124 (2010), 77–90 | DOI | MR | Zbl
[52] Stepanov S., Shandra I., Mikeš J., “Harmonic and projective diffeomorphisms”, J. Math. Sci., 207 (2015), 658–668 | DOI | MR | Zbl
[53] Yano K., Bochner S., Curvature and Betti Numbers, Princeton Univ. Press, 1953 | MR | Zbl