Geodesic transformations of distributions of sub-Riemannian manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 14-18
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M$ be a sub-Riemannian contact-type manifold endowed with a distribution $D$. Using an endomorphism $N: D\to D$ of the distribution $D$, one can prolong the inner connection, which transfers admissible vectors along admissible curves on the manifold $M$, up to a connection in the vector bundle $(D,\pi,M)$, where $\pi:D\to M$ is the natural projection. The connection obtained is called the $N$-prolonged connection. The setting of an $N$-prolonged connection is equivalent to the setting of an $N$-prolonged sub-Riemannian on the distribution $D$. Using the structure equations of the $N$-prolonged structure, we calculate the coefficients of the Levi-Civita connection obtained by the prolongation of the Riemannian manifold. We prove that if a distribution $D$ of a sub-Riemannian manifold is not integrable, then two $N$-prolonged, contact-type, sub-Riemannian structures, one of which is determined by the zero endomorphism and the other by an arbitrary nonzero endomorphism, belong to distinct geodesic classes.
Keywords:
sub-Riemannian manifold of contact type, $N$-extended connection, geodesic transformation.
@article{INTO_2020_182_a2,
author = {S. V. Galaev},
title = {Geodesic transformations of distributions of {sub-Riemannian} manifolds},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {14--18},
publisher = {mathdoc},
volume = {182},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/}
}
TY - JOUR AU - S. V. Galaev TI - Geodesic transformations of distributions of sub-Riemannian manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 14 EP - 18 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/ LA - ru ID - INTO_2020_182_a2 ER -
%0 Journal Article %A S. V. Galaev %T Geodesic transformations of distributions of sub-Riemannian manifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 14-18 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/ %G ru %F INTO_2020_182_a2
S. V. Galaev. Geodesic transformations of distributions of sub-Riemannian manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 14-18. http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/