Geodesic transformations of distributions of sub-Riemannian manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a sub-Riemannian contact-type manifold endowed with a distribution $D$. Using an endomorphism $N: D\to D$ of the distribution $D$, one can prolong the inner connection, which transfers admissible vectors along admissible curves on the manifold $M$, up to a connection in the vector bundle $(D,\pi,M)$, where $\pi:D\to M$ is the natural projection. The connection obtained is called the $N$-prolonged connection. The setting of an $N$-prolonged connection is equivalent to the setting of an $N$-prolonged sub-Riemannian on the distribution $D$. Using the structure equations of the $N$-prolonged structure, we calculate the coefficients of the Levi-Civita connection obtained by the prolongation of the Riemannian manifold. We prove that if a distribution $D$ of a sub-Riemannian manifold is not integrable, then two $N$-prolonged, contact-type, sub-Riemannian structures, one of which is determined by the zero endomorphism and the other by an arbitrary nonzero endomorphism, belong to distinct geodesic classes.
Keywords: sub-Riemannian manifold of contact type, $N$-extended connection, geodesic transformation.
@article{INTO_2020_182_a2,
     author = {S. V. Galaev},
     title = {Geodesic transformations of distributions of {sub-Riemannian} manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {14--18},
     publisher = {mathdoc},
     volume = {182},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Geodesic transformations of distributions of sub-Riemannian manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 14
EP  - 18
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/
LA  - ru
ID  - INTO_2020_182_a2
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Geodesic transformations of distributions of sub-Riemannian manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 14-18
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/
%G ru
%F INTO_2020_182_a2
S. V. Galaev. Geodesic transformations of distributions of sub-Riemannian manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 14-18. http://geodesic.mathdoc.fr/item/INTO_2020_182_a2/

[6] Bukusheva A. V., “Sloeniya na raspredeleniyakh s finslerovoi metrikoi”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 14:3 (2014), 247–251 | Zbl

[7] Bukusheva A. V., “Nelineinye svyaznosti i vnutrennie polupulverizatsii na raspredelenii s obobschennoi lagranzhevoi metrikoi”, Differ. geom. mnogoobr. figur., 2015, no. 46, 58–63 | MR

[8] Bukusheva A. V., “O geometrii kontaktnykh metricheskikh prostranstv s $\varphi$-svyaznostyu”, Nauch. ved. Belgorod. gos. un-ta. Ser. Mat. Fiz., 17 (214):40 (2015), 20–24

[9] Bukusheva A. V., Galaev S. V., “Svyaznosti nad raspredeleniem i geodezicheskie pulverizatsii”, Izv. vuzov. Mat., 2013, no. 4, 10–18 | MR | Zbl

[10] Bukusheva A. V., Galaev S. V., “Geometriya pochti kontaktnykh giperkelerovykh mnogoobrazii”, Differ. geom. mnogoobr. figur., 2017, no. 48, 32–41 | MR | Zbl

[11] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v $n$-mernom prostranstve”, Tr. semin. po vektor. tenzor. anal., 1941, no. 5, 173–255 | MR

[12] Galaev S. V., “Pochti kontaktnye metricheskie struktury, opredelyaemye $N$-prodolzhennoi svyaznostyu”, Mat. zametki SVFU., 22:1 (2015), 25–34 | MR | Zbl

[13] Galaev S. V., “Pochti kontaktnye metricheskie prostranstva s $N$-svyaznostyu”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 15:3 (2015), 258–263

[14] Galaev S. V., “Obobschennyi tenzor krivizny Vagnera pochti kontaktnykh metricheskikh prostranstv”, Chebyshev. sb., 17:3 (59) (2016), 53–63 | MR | Zbl

[15] Galaev S. V., “Dopustimye giperkompleksnye struktury na raspredeleniyakh sasakievykh mnogoobrazii”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 16:3 (2016), 263–272 | MR

[16] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR

[17] Bukusheva A. V., Galaev S. V., “Almost contact metric structures defined by connection over distribution”, Bull. Transilv. Univ. Braşov. Ser. III. Math. Inform. Phys., 4 (53):2 (2011), 13–22 | MR | Zbl