On the dynamics of two-dimensional fractional linear control systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 101-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the behavior of phase trajectories of fractional two-dimensional linear systems with control. We focus on the double fractional integrator. Fractional differentiation operators are understood in the sense of Hilfer or Hadamard. Admissible controls are assumed to be norm-bounded; we search for them in the functional class $L_\infty[0,T]$, $T>0$. Based on explicitly specified constraints on the norm of a control, we calculate boundary trajectories of the system, which determine on the phase plane a domain in which all admissible trajectories of the system are localized. We show that the solution of the optimal control problem by the method of moments leads to some minimization problem that does not have an analytical solution in the general case (for arbitrary values of the exponents of fractional differentiation in the equations governing the system). We establish conditions under which the minimization problem considered has a solution and determine subdomains of possible localization of this solution. Exact and approximate analytical solutions of the minimization problem are constructed in some particular cases and the results of numerical computation of the minimum are given. The corresponding solutions of the optimal control problem are obtained and phase trajectories of the system are found. All results obtained are analyzed.
Keywords: phase trajectory, fractional order system, optimal control.
@article{INTO_2020_182_a13,
     author = {S. S. Postnov and E. A. Postnova},
     title = {On the dynamics of two-dimensional fractional linear control systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {101--118},
     publisher = {mathdoc},
     volume = {182},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a13/}
}
TY  - JOUR
AU  - S. S. Postnov
AU  - E. A. Postnova
TI  - On the dynamics of two-dimensional fractional linear control systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 101
EP  - 118
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_182_a13/
LA  - ru
ID  - INTO_2020_182_a13
ER  - 
%0 Journal Article
%A S. S. Postnov
%A E. A. Postnova
%T On the dynamics of two-dimensional fractional linear control systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 101-118
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_182_a13/
%G ru
%F INTO_2020_182_a13
S. S. Postnov; E. A. Postnova. On the dynamics of two-dimensional fractional linear control systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 101-118. http://geodesic.mathdoc.fr/item/INTO_2020_182_a13/

[1] Butkovskii A. G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975

[2] Butkovskii A. G., Fazovye portrety upravlyaemykh dinamicheskikh sistem, Nauka, M., 1985

[3] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[4] Kubyshkin V. A., Postnov S. S., “Issledovanie dvukh zadach optimalnogo upravleniya mayatnikom drobnogo poryadka s pomoschyu metoda momentov”, Probl. upravl., 2014, no. 3, 14-–22

[5] Kubyshkin V. A., Postnov S. S., “Zadacha optimalnogo upravleniya lineinoi statsionarnoi sistemoi drobnogo poryadka v forme problemy momentov: postanovka i issledovanie”, Avtomat. telemekh., 2014, no. 5, 3–17 | MR | Zbl

[6] Postnov S. S., “Issledovanie zadachi optimalnogo upravleniya dlya odinochnogo i dvoinogo integratorov drobnogo poryadka s pomoschyu metoda momentov”, Probl. upravl., 2012, no. 5, 9–17

[7] Postnov S. S., “Zadachi optimalnogo upravleniya dlya lineinykh sistem drobnogo poryadka, zadannykh uravneniyami s proizvodnoi Adamara”, Dokl. RAN., 476:2 (2017), 143–147 | MR | Zbl

[8] Postnov S. S., “Zadachi optimalnogo upravleniya dlya nekotorykh lineinykh sistem drobnogo poryadka, zadannykh uravneniyami s proizvodnoi Khilfera”, Probl. upravl., 2018, no. 5, 14–25 | MR

[9] Postnova E. A., “Optimalnoe upravlenie dvizheniem sistemy, modeliruemoi dvoinym integratorom drobnogo poryadka”, Probl. upravl., 2018, no. 2, 40–46

[10] Bai J., Wen G., Rahmani A., Yu Y., “Consensus for the fractional-order double integrator multi-agent systems based on the sliding mode estimator”, IET Control Theory Appl., 12:5 (2018), 621–628 | DOI | MR

[11] Hilfer R., “Fractional time evolution”, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000, 87-–130 | DOI | MR | Zbl

[12] Kamal S., Raman A., Bandyopadhyay B., “Finite-time stabilization of fractional-order uncertain chain of integrator: An integral sliding mode approach”, IEEE Trans. Automat. Control., 58:6 (2013), 1597–1602 | DOI | MR | Zbl

[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[14] Mozyrska D., Torres D. F. M., “Modified optimal energy and initial memory of fractional continuous-time linear systems”, Signal Proc., 91:3 (2011), 379–-385 | DOI | Zbl

[15] Postnov S., “Optimal control problem for linear fractional-order systems, described by equations with Hadamard-type derivative”, J. Phys. Conf. Ser., 918:012026 (2017) | MR

[16] Tricaud C., Chen Y. Q., “Time-optimal control of systems with fractional dynamics”, Int. J. Differ. Equations., 2010:461048 (2010) | MR