Euler continuity equation with high-order terms in time
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 95-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the appearance of high-order terms in the continuity equation for an incompressible fluid obtained by L. Euler in 1752 from the linear Cauchy–Helmholtz equations. According to Lighthill's acoustic analogy, these additional terms in the inhomogeneity of the wave equation lead to the generation of self-oscillations and sound waves. In Lighthill's method, the second-order wave equation is obtained by taking the time derivative of the continuity equation. In this case, second-order terms that are usually neglected, increase their order and become comparable with other terms of the wave equation. Solution of the inhomogeneous wave equation allows one calculate or estimate the intensity of vibrations and self-oscillations, which are sometimes considered spontaneous.
Keywords: Euler continuity equation, high-order terms of smallness, Gauss–Ostrogradsky formula, Cauchy–Helmholtz formulas, inhomogeneous wave equation, sound generation, self-oscillations.
@article{INTO_2020_182_a12,
     author = {V. M. Ovsyannikov},
     title = {Euler continuity equation with high-order terms in time},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {182},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a12/}
}
TY  - JOUR
AU  - V. M. Ovsyannikov
TI  - Euler continuity equation with high-order terms in time
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 95
EP  - 100
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_182_a12/
LA  - ru
ID  - INTO_2020_182_a12
ER  - 
%0 Journal Article
%A V. M. Ovsyannikov
%T Euler continuity equation with high-order terms in time
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 95-100
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_182_a12/
%G ru
%F INTO_2020_182_a12
V. M. Ovsyannikov. Euler continuity equation with high-order terms in time. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 95-100. http://geodesic.mathdoc.fr/item/INTO_2020_182_a12/

[2] Bubnov V. A., “Fizicheskie printsipy gidrodinamicheskikh dvizhenii”, Problemy aksiomatiki v gidrogazodinamike, v. 4, Prometei, M., 1997, 206–269

[3] Bubnov V. I., “Kinematika zhidkoi chastitsy”, Problemy aksiomatiki v gidrogazodinamike, v. 7, Prometei, M., 1999, 11–29

[4] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi Mir, M., 2007

[5] Koppel T. A., Liiv U. R., “Eksperimentalnoe issledovanie vozniknoveniya dvizheniya zhidkosti v truboprovodakh”, Izv. AN SSSR. Mekh. zhidk. gaza., 1977, no. 6, 78–85

[6] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR

[7] Ovsyannikov V. M., “Raschet vozniknoveniya dvizheniya zhidkosti v truboprovode”, Izv. AN SSSR. Mekh. zhidk. gaza., 1981, no. 5, 158–160

[8] Ovsyannikov V. M., “Vvedenie v aksiomaticheskuyu mekhaniku zhidkosti, osnovannuyu na bazisnykh eksperimentakh s zhidkostyu”, Problemy aksiomatiki v gidrogazodinamike, v. 15, M., 2006, 19–51

[9] Ovsyannikov V. M., “Raznostnaya forma uravneniya nerazryvnosti s uchetom deformatsii sdviga”, Problemy aksiomatiki v gidrogazodinamike, v. 16, M., 2007

[10] Ovsyannikov V. M., “Istoriya vyvoda uravneniya nerazryvnosti”, Mat. XI Vseross. s'ezda po fundam. probl. teor. i prikl. mekh. (Kazan, 20–24 avgusta 2015 g.), Kazan, 2015, 2823–2824

[11] Ovsyannikov V. M., “Sopostavlenie dopolnitelnykh slagaemykh vtorogo poryadka malosti dlya konechno-raznostnykh uravnenii Eilera i malykh dobavok v regulyarizovannykh uravneniyakh gidrodinamiki”, Zh. vychisl. mat. mat. fiz., 2017, no. 5, 876–880 | Zbl

[12] Ovsyannikov V. M., Volnoobrazovanie i konechno-raznostnoe uravnenie nerazryvnosti Leonarda Eilera, Sputnik+, M., 2017

[13] Ovsyannikov V. M., Lokalnoe differentsialnoe nesokhranenie pri integralnom sokhranenii v gazovoi dinamike, Sputnik+, M., 2017

[14] Ovsyannikov V. M., “Ellipsoid deformatsii N. E. Zhukovskogo s uchetom chlenov vtorogo poryadka malosti”, Inzh. zh. Nauka innov., 2018, no. 5 (77), 1–11

[15] Ovsyannikov V. M., “Vibrator Landau—Lifshitsa v uravneniyakh gazovoi dinamiki”, Inzh. zh. Nauka innov., 2018, no. 4 (76), 1–8 | MR

[16] Ovsyannikov V. M., “Ispolzovanie aksiomy Leibnitsa teorii beskonechno malykh i aksiomy Nyutona teorii ischezayusche malykh velichin pri vyvode volnovogo differentsialnogo uravneniya”, Tez. dokl. Mezhdunar. konf. po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal, 6–11 iyulya 2018 g.), Suzdal, 2018, 155–156

[17] Eiler L., “Obschie zakony dvizheniya zhidkostei”, Mekh. zhidk. gaza., 6 (1999), 26–54

[18] Euler L., Commentationes Mechanicae ad Theoriam Corporum Fluidorum Pertinentes, ed. Truesdell C. A., Orell Fuessli, Zürich, 1954 | MR | Zbl

[19] Lighthill M. J., “On sound generated aerodynamically. I. General theory”, Proc. Roy. Soc. Lond. Ser. A, 211 (1952), 564–587 | DOI | MR | Zbl

[20] Lighthill M. J., “On sound generated aerodynamically. I. Turbulence a source of sound”, Proc. Roy. Soc. Lond. Ser. A, 222 (1954), 1–32 | DOI | MR | Zbl