Proof of the Brunn--Minkowski theorem by elementary methods
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 70-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose new proofs of the classical Brunn—Minkowski theorem on the volume of the sum of convex polyhedra $P_0$ and $P_1$ of the same $n$-dimensional volume in Euclidean space $\mathbb{R}^n$, $n\ge2$: $V_n((1-t)P_0+tP_1) \ge V_n(P_0) = V_n(P_1)$, $0$, where the equality holds only if $P_1$ is obtained from $P_0$ by a parallel transfer; in other cases, the strict inequality holds. Proofs are based on the sequential partition of the polyhedron $P_0$ into simplexes by hyperplanes. For dimensions $n=2$ and $n=3$, in the case where $P_0$ is a simplex (a triangle for $n=2$), for an arbitrary convex polyhedron $P_1 \subset \mathbb{R}^n$, we construct a continuous (in the Hausdorff metric) one-parameter family of convex polyhedra $P_1(s) \subset \mathbb{R}^n$, $s \in [0,1]$, $P_1(0)=P_1$, for which the function $w(s)=V_n\big((1-t) P_0 + tP_1 (s)\big)$ strictly monotonically decreases, and $P_1(1)$ is obtained from $P_0$ by a parallel transfer. If $P_1$ is not obtained from $P_0$ by a parallel transfer, then, using elementary geometric constructions, we establish the existence of a polyhedron $P_1'$ for which $V_n\big((1-t) P_0 + tP_1\big)> V_n \big((1-t ) P_0 + tP'_1\big)$.
Keywords: convex polytope, triangle, Brunn—Minkowski inequality.
Mots-clés : simplex, volumes
@article{INTO_2020_182_a11,
     author = {F. M. Malyshev},
     title = {Proof of the {Brunn--Minkowski} theorem by elementary methods},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {70--94},
     publisher = {mathdoc},
     volume = {182},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Proof of the Brunn--Minkowski theorem by elementary methods
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 70
EP  - 94
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/
LA  - ru
ID  - INTO_2020_182_a11
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Proof of the Brunn--Minkowski theorem by elementary methods
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 70-94
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/
%G ru
%F INTO_2020_182_a11
F. M. Malyshev. Proof of the Brunn--Minkowski theorem by elementary methods. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 70-94. http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/

[1] Aigner M., Tsigler G., Dokazatelstva iz Knigi. Luchshie dokazatelstva so vremen Evklida do nashikh dnei, Mir, M., 2006

[2] Aleksandrov A. D., Vypuklye mnogogranniki, GITTL, M., L., 1950 | MR

[3] Belousov E. G., Vvedenie v vypuklyi analiz i tselochislennoe programmirovanie, MGU, M., 1977

[4] Blyashke V., Krug i shar, Nauka, M., 1967

[5] Buldygin V. V., Kharazishvili A. B., Neravenstvo Brunna—Minkovskogo i ego prilozheniya, Naukova Dumka, Kiev, 1985 | MR

[6] Burago D. M., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980

[7] Delone B. N., “German Minkovskii”, Usp. mat. nauk., 1936, no. 2, 32–38

[8] Delone B. N., “Dokazatelstvo neravenstva Brunna—Minkovskogo”, Usp. mat. nauk., 1936, no. 2, 39–46 | Zbl

[9] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[10] Malyshev F. M., “Novoe dokazatelstvo neravenstva Brunna—Minkovskogo”, Mat. Mezhdunar. konf. «Klassicheskaya i sovremennaya geometriya», posv. 100-letiyu so dnya rozhdeniya V. T. Bazyleva, MPGU, M., 2019, 111–113

[11] Malyshev F. M., “Optimizatsionnaya zadacha dlya neravenstva Brunna—Minkovskogo”, Tr. Mat. in-ta im. V. A. Steklova RAN., 218 (1997), 262–265 | Zbl

[12] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987

[13] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izometrii, Nauka, M., 1966

[14] Ball K., “An Elementary Introduction to Monotone Transportation”, Lect. Notes Math., 1850 (2004), 41–52 | DOI | MR | Zbl

[15] Brunn H., Über Ovale und Eiflachen, Munchen, 1887

[16] Gardner R. J., “The Brunn–Minkowski inequality”, Bull. Am. Math. Soc., 39:3 (2002), 355–405 | DOI | MR | Zbl