Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_182_a11, author = {F. M. Malyshev}, title = {Proof of the {Brunn--Minkowski} theorem by elementary methods}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {70--94}, publisher = {mathdoc}, volume = {182}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/} }
TY - JOUR AU - F. M. Malyshev TI - Proof of the Brunn--Minkowski theorem by elementary methods JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 70 EP - 94 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/ LA - ru ID - INTO_2020_182_a11 ER -
%0 Journal Article %A F. M. Malyshev %T Proof of the Brunn--Minkowski theorem by elementary methods %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 70-94 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/ %G ru %F INTO_2020_182_a11
F. M. Malyshev. Proof of the Brunn--Minkowski theorem by elementary methods. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 70-94. http://geodesic.mathdoc.fr/item/INTO_2020_182_a11/
[1] Aigner M., Tsigler G., Dokazatelstva iz Knigi. Luchshie dokazatelstva so vremen Evklida do nashikh dnei, Mir, M., 2006
[2] Aleksandrov A. D., Vypuklye mnogogranniki, GITTL, M., L., 1950 | MR
[3] Belousov E. G., Vvedenie v vypuklyi analiz i tselochislennoe programmirovanie, MGU, M., 1977
[4] Blyashke V., Krug i shar, Nauka, M., 1967
[5] Buldygin V. V., Kharazishvili A. B., Neravenstvo Brunna—Minkovskogo i ego prilozheniya, Naukova Dumka, Kiev, 1985 | MR
[6] Burago D. M., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980
[7] Delone B. N., “German Minkovskii”, Usp. mat. nauk., 1936, no. 2, 32–38
[8] Delone B. N., “Dokazatelstvo neravenstva Brunna—Minkovskogo”, Usp. mat. nauk., 1936, no. 2, 39–46 | Zbl
[9] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[10] Malyshev F. M., “Novoe dokazatelstvo neravenstva Brunna—Minkovskogo”, Mat. Mezhdunar. konf. «Klassicheskaya i sovremennaya geometriya», posv. 100-letiyu so dnya rozhdeniya V. T. Bazyleva, MPGU, M., 2019, 111–113
[11] Malyshev F. M., “Optimizatsionnaya zadacha dlya neravenstva Brunna—Minkovskogo”, Tr. Mat. in-ta im. V. A. Steklova RAN., 218 (1997), 262–265 | Zbl
[12] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987
[13] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izometrii, Nauka, M., 1966
[14] Ball K., “An Elementary Introduction to Monotone Transportation”, Lect. Notes Math., 1850 (2004), 41–52 | DOI | MR | Zbl
[15] Brunn H., Über Ovale und Eiflachen, Munchen, 1887
[16] Gardner R. J., “The Brunn–Minkowski inequality”, Bull. Am. Math. Soc., 39:3 (2002), 355–405 | DOI | MR | Zbl