Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_181_a6, author = {D. S. Klimentov}, title = {A stochastic condition for minimal surfaces}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {54--58}, publisher = {mathdoc}, volume = {181}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a6/} }
TY - JOUR AU - D. S. Klimentov TI - A stochastic condition for minimal surfaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 54 EP - 58 VL - 181 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_181_a6/ LA - ru ID - INTO_2020_181_a6 ER -
D. S. Klimentov. A stochastic condition for minimal surfaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 54-58. http://geodesic.mathdoc.fr/item/INTO_2020_181_a6/
[1] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986
[2] Vekua I. N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR
[3] Dynkin E. B., Markovskie protsessy, Fizmatlit, M., 1963
[4] Klimentov D. S., “Stokhasticheskii analog osnovnoi teoremy teorii poverkhnostei dlya poverkhnostei polozhitelnoi krivizny”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2013, no. 6, 24–27
[5] Klimentov D. S., “Stokhasticheskii analog osnovnoi teoremy teorii poverkhnostei dlya poverkhnostei nenulevoi srednei krivizny”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2014, no. 1, 15–18
[6] Finikov S. P., Kurs differentsialnoi geometrii, GITTL, M., 1952 | MR
[7] Fukushima M., Oshima Y., Takeda M., Dirishlet Forms and Symmetric Markov Processes, de Gruyter, Berlin–New York, 1994 | MR