Voir la notice du chapitre de livre
@article{INTO_2020_181_a6,
author = {D. S. Klimentov},
title = {A stochastic condition for minimal surfaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {54--58},
year = {2020},
volume = {181},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a6/}
}
D. S. Klimentov. A stochastic condition for minimal surfaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 54-58. http://geodesic.mathdoc.fr/item/INTO_2020_181_a6/
[1] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986
[2] Vekua I. N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR
[3] Dynkin E. B., Markovskie protsessy, Fizmatlit, M., 1963
[4] Klimentov D. S., “Stokhasticheskii analog osnovnoi teoremy teorii poverkhnostei dlya poverkhnostei polozhitelnoi krivizny”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2013, no. 6, 24–27
[5] Klimentov D. S., “Stokhasticheskii analog osnovnoi teoremy teorii poverkhnostei dlya poverkhnostei nenulevoi srednei krivizny”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2014, no. 1, 15–18
[6] Finikov S. P., Kurs differentsialnoi geometrii, GITTL, M., 1952 | MR
[7] Fukushima M., Oshima Y., Takeda M., Dirishlet Forms and Symmetric Markov Processes, de Gruyter, Berlin–New York, 1994 | MR