Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_181_a3, author = {E. Deza}, title = {On generalized discrete metric structures}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {22--29}, publisher = {mathdoc}, volume = {181}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a3/} }
E. Deza. On generalized discrete metric structures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 22-29. http://geodesic.mathdoc.fr/item/INTO_2020_181_a3/
[1] Charikar M., Makarychev K., Makarychev V., “Directed metrics and directed graph partitioning problem”, Proc. 11 ACM-SIAM Symp. on Discrete Algorithms, 2006, 51–60 | MR | Zbl
[2] Deza M. M., Deza E. I., Encyclopedia of Distances, Springer-Verlag, Berlin, 2014 | MR | Zbl
[3] Deza M. M., Deza E. I., “Cones of partial metrics”, Contrib. Discr. Math., 6:1 (2011), 26–47 | MR | Zbl
[4] Deza M. M., Deza E. I., Vidali J., “Cones of weighted and partial metrics”, Proc. Int. Conf. on Algebra, World Scientific, New Jersey, 2010, 177–197 | MR
[5] Deza M. M., Dutour M., Deza E. I., Generalizations of Finite Metrics and Cuts, World Scientific, 2016 | MR | Zbl
[6] Deza M. M., Dutour M., Panteleeva E. I., “Small cones of oriented semi-metrics”, Am. J. Math. Management Sci., 22:3-4 (2002), 199–225 | MR | Zbl
[7] Deza M. M., Grishukhin V. P., Deza E. I., “Cones of weighted quasi-metrics, weighted quasi-hypermetrics and of oriented cuts”, Mathematics of Distances and Applications, ITEA, Sofia, 2012, 31–53 | MR
[8] Deza M. M., Laurent M., Geometry of Cuts and Metrics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[9] Deza M. M., Panteleeva E. I., “Quasi-semi-metrics, oriented multi-cuts and related polyhedra”, Eur. J. Combin., 21:6 (2000), 777–795 | DOI | MR | Zbl
[10] Deza M. M., Rosenberg I. G., “$n$-Semimetrics”, Eur. J. Combin., 21:6 (2000), 797–806 | DOI | MR | Zbl
[11] Fréchet M., “Sur quelques points du calcul fonctionnel”, Rend. Circ. Mat. Palermo., 22 (1906), 1–74 | DOI | Zbl
[12] Hausdorff F., Grundzüge der Mengenlehre, Leipzig, 1914 | MR
[13] Matthews S. G., “Partial metric topology”, Ann. New York Acad. Sci., 728 (1994), 183–197 | DOI | MR | Zbl
[14] Seda A. K., “Quasi-metrics and the semantic of logic programs”, Fundam. Inform., 29 (1997), 97–117 | DOI | MR | Zbl
[15] Wilson W. A., “On quasi-metric spaces”, Am. J. Math., 53 (1931), 575–681 | MR