On generalized discrete metric structures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss problems related to construction and investigation of cones of semimetrics, quasi-semimetrics (which are oriented analogs of symmetric semimetrics), and $m$-semimetrics (which are multidimensional analogs of two-dimensional semimetrics).
Mots-clés : distance
Keywords: semimetric, metric, quasi-semimetric, multidimensional semimetric, cut, multi-cut, cone of generalized discrete metric structures.
@article{INTO_2020_181_a3,
     author = {E. Deza},
     title = {On generalized discrete metric structures},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {22--29},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a3/}
}
TY  - JOUR
AU  - E. Deza
TI  - On generalized discrete metric structures
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 22
EP  - 29
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a3/
LA  - ru
ID  - INTO_2020_181_a3
ER  - 
%0 Journal Article
%A E. Deza
%T On generalized discrete metric structures
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 22-29
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a3/
%G ru
%F INTO_2020_181_a3
E. Deza. On generalized discrete metric structures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 22-29. http://geodesic.mathdoc.fr/item/INTO_2020_181_a3/

[1] Charikar M., Makarychev K., Makarychev V., “Directed metrics and directed graph partitioning problem”, Proc. 11 ACM-SIAM Symp. on Discrete Algorithms, 2006, 51–60 | MR | Zbl

[2] Deza M. M., Deza E. I., Encyclopedia of Distances, Springer-Verlag, Berlin, 2014 | MR | Zbl

[3] Deza M. M., Deza E. I., “Cones of partial metrics”, Contrib. Discr. Math., 6:1 (2011), 26–47 | MR | Zbl

[4] Deza M. M., Deza E. I., Vidali J., “Cones of weighted and partial metrics”, Proc. Int. Conf. on Algebra, World Scientific, New Jersey, 2010, 177–197 | MR

[5] Deza M. M., Dutour M., Deza E. I., Generalizations of Finite Metrics and Cuts, World Scientific, 2016 | MR | Zbl

[6] Deza M. M., Dutour M., Panteleeva E. I., “Small cones of oriented semi-metrics”, Am. J. Math. Management Sci., 22:3-4 (2002), 199–225 | MR | Zbl

[7] Deza M. M., Grishukhin V. P., Deza E. I., “Cones of weighted quasi-metrics, weighted quasi-hypermetrics and of oriented cuts”, Mathematics of Distances and Applications, ITEA, Sofia, 2012, 31–53 | MR

[8] Deza M. M., Laurent M., Geometry of Cuts and Metrics, Springer-Verlag, Berlin, 1997 | MR | Zbl

[9] Deza M. M., Panteleeva E. I., “Quasi-semi-metrics, oriented multi-cuts and related polyhedra”, Eur. J. Combin., 21:6 (2000), 777–795 | DOI | MR | Zbl

[10] Deza M. M., Rosenberg I. G., “$n$-Semimetrics”, Eur. J. Combin., 21:6 (2000), 797–806 | DOI | MR | Zbl

[11] Fréchet M., “Sur quelques points du calcul fonctionnel”, Rend. Circ. Mat. Palermo., 22 (1906), 1–74 | DOI | Zbl

[12] Hausdorff F., Grundzüge der Mengenlehre, Leipzig, 1914 | MR

[13] Matthews S. G., “Partial metric topology”, Ann. New York Acad. Sci., 728 (1994), 183–197 | DOI | MR | Zbl

[14] Seda A. K., “Quasi-metrics and the semantic of logic programs”, Fundam. Inform., 29 (1997), 97–117 | DOI | MR | Zbl

[15] Wilson W. A., “On quasi-metric spaces”, Am. J. Math., 53 (1931), 575–681 | MR