On polyhedra with rhombic vertices and regular faces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 112-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the class of closed convex polyhedra with regular faces in $E^3$ for which the stars of some vertices are symmetric and consist of equal and identically located rhombuses ($RR$-polyhedra). We obtain a complete classification of $RR$-polyhedra with two acute-angled rhombic vertices whose stars are separated by a belt of regular faces of the same type. The proof is based on a result on the existence of two polyhedra of this class obtained by the author earlier.
Keywords: convex polyhedron, symmetric rhombic vertex, star of the vertex, belt of regular faces, $RR$-polyhedron.
@article{INTO_2020_181_a12,
     author = {V. I. Subbotin},
     title = {On polyhedra with rhombic vertices and regular faces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {112--117},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a12/}
}
TY  - JOUR
AU  - V. I. Subbotin
TI  - On polyhedra with rhombic vertices and regular faces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 112
EP  - 117
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a12/
LA  - ru
ID  - INTO_2020_181_a12
ER  - 
%0 Journal Article
%A V. I. Subbotin
%T On polyhedra with rhombic vertices and regular faces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 112-117
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a12/
%G ru
%F INTO_2020_181_a12
V. I. Subbotin. On polyhedra with rhombic vertices and regular faces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 112-117. http://geodesic.mathdoc.fr/item/INTO_2020_181_a12/

[1] Deza M., Grishukhin V. P., Shtogrin A. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007

[2] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauch. semin. LOMI., 2 (1967), 1–220

[3] Subbotin V. I., “O dvukh klassakh mnogogrannikov s rombicheskimi vershinami”, Zap. nauch. semin. POMI., 476 (2018), 153–164

[4] Subbotin V. I., “Ob odnom klasse silno simmetrichnykh mnogogrannikov”, Chebyshev. sb., 2016, no. 4, 132–140 | Zbl

[5] Coxeter H. S. M., Regular Polytopes, Dover, New York, 1973 | MR

[6] Coxeter H. S. M., “Regular and semi-regular polytopes. III”, Math. Z., 200:21 (1988), 3–45 | DOI | MR | Zbl

[7] Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[8] Farris S. L., “Completely classifying all vertex-transitive and edge-transitive polyhedra”, Geom. Dedic., 26:1 (1988), 111–124 | DOI | MR | Zbl

[9] Grunbaum B., “Regular polyhedra—old and new”, Aequat. Math., 16:1-2 (1977), 1–20 | DOI | MR | Zbl

[10] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl