Locally Euclidean metrics and their isometric realizations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 102-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are many works related to metrics and surfaces of positive and negative curvature. This paper is a survey of results related to locally Euclidean metrics and surfaces carrying such metrics. In this topic, there are many more problems included in the intersection of geometry, complex analysis, and differential equations that can become a source of new interesting research.
Keywords: locally Euclidean metric, natural representation, isometric realization, developable surface, asymptotic coordinates, Monge—Ampère equation.
Mots-clés : classification
@article{INTO_2020_181_a11,
     author = {I. Kh. Sabitov},
     title = {Locally {Euclidean} metrics and their isometric realizations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {102--111},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Locally Euclidean metrics and their isometric realizations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 102
EP  - 111
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/
LA  - ru
ID  - INTO_2020_181_a11
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Locally Euclidean metrics and their isometric realizations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 102-111
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/
%G ru
%F INTO_2020_181_a11
I. Kh. Sabitov. Locally Euclidean metrics and their isometric realizations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 102-111. http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/

[1] Borisov Yu. F., “Neregulyarnye poverkhnosti klassa $C^{1,\beta}$ s analiticheskimi metrikami”, Sib. mat. zh., 45:1 (2004), 25–61 | MR | Zbl

[2] Gromov M. L., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990

[3] Mikhalev S. N., Sabitov I. Kh., “Izometricheskie vlozheniya lokalno evklidovykh metrik v $\mathbb{R}^3$ v vide konicheskikh poverkhnostei”, Mat. zametki., 95:2 (2014), 63–73

[4] Mikhalev S. N., Sabitov I. Kh., “Izometricheskie vlozheniya v $\mathbb{R}^3$ koltsa s lokalno evklidovoi metrikoi s tsilindricheski tipom neodnoznachnosti”, Mat. zametki., 98:3 (2015), 378–385 | MR | Zbl

[5] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1968 | MR

[6] Reshetnyak Yu. G., Teoremy ustoichivosti v geometrii i analize, Nauka, Novosibirsk, 1982 | MR

[7] Sabitov I. Kh., “Izometricheskie pogruzheniya lokalno evklidovykh metrik v $\mathbb{R}^3$”, Sib. mat. zh., 26:3 (1985), 156–167 | MR | Zbl

[8] Sabitov I. Kh., “K voprosu o gladkosti izometrii”, Sib. mat. zh., 34:4 (1992), 169–176

[9] Sabitov I. Kh., “Izometricheski pogruzheniya i vlozheniya lokalno evklidovykh metrik v $\mathbb{R}^2$”, Izv. RAN. Ser. mat., 63:6 (1999), 147–166 | MR | Zbl

[10] Sabitov I. Kh., “Izometricheskie pogruzheniya i vlozheniya ploskogo lista Mebiusa v evklidovy prostranstva”, Izv. RAN. Ser. mat., 71:5 (2007), 197–224 | MR | Zbl

[11] Sabitov I. Kh., “Lokalno-evklidovye metriki s zadannoi geodezicheskoi kriviznoi kraya”, Tr. Mat. in-ta im. V. A. Steklova RAN., 266 (2009), 218–226 | Zbl

[12] Sabitov I. Kh., “O vneshnei krivizne i vneshnem stroenii $C^1$-gladkikh normalnykh razvertyvayuschikhsya poverkhnostei”, Mat. zametki., 87:6 (2010), 900–906

[13] Sabitov I. Kh., “Resheniya trivialnogo uravneniya Monzha—Ampera s izolirovannymi osobymi tochkami”, Sib. elektron. mat. izv., 13 (2016), 740–743 | Zbl

[14] Calabi E., Hartman P., “On the smoothness of isometries”, Duke Math. J., 37:4 (1970), 741–750 | DOI | MR | Zbl

[15] Delaunay N., “Sur les surfaces n'ayant qu'un côté et sur les points singuliers des courbes planes”, Bull. Soc. Math. Fr., 26 (1898), 43–52 | DOI | MR | Zbl

[16] Galvez J. A., Nelli B., “Entire solutions of the degenerate Monge–Ampere equation with a finite number of singularities”, J. Differ. Equ., 201 (2016), 6614–6631 | DOI | MR

[17] Hartman P., Nirenberg L., “On spherical image maps whose Jacobians do not change sign”, Am. J. Math., 81:4 (1959), 901–920 | DOI | MR | Zbl

[18] Klingenberg W., A Course in Differential Geometry, Springer-Verlag, New York–Heidelberg–Berlin, 1978 | MR | Zbl

[19] Sabitov I. Kh., “Isometric immersions and embeddings of locally Euclidean metrics”, Rev. Math. Math. Phys., 13:1 (2008), 1–276 | MR

[20] Schwarz G., “A pretender to the title “Canonical Möbius strip””, Pac. J. Math., 143 (1990), 195–200 | DOI | MR | Zbl

[21] Ushakov V., “Parametrization of developable surfaces by asymptotic lines”, Bull. Austr. Math. Soc., 54 (1996), 411–421 | DOI | MR | Zbl

[22] Ushakov V., “The explicit general solution of trivial Monge–Ampère equation”, Comment. Math. Helvet., 75 (2000), 125–133 | DOI | MR | Zbl