Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_181_a11, author = {I. Kh. Sabitov}, title = {Locally {Euclidean} metrics and their isometric realizations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {102--111}, publisher = {mathdoc}, volume = {181}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/} }
TY - JOUR AU - I. Kh. Sabitov TI - Locally Euclidean metrics and their isometric realizations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 102 EP - 111 VL - 181 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/ LA - ru ID - INTO_2020_181_a11 ER -
%0 Journal Article %A I. Kh. Sabitov %T Locally Euclidean metrics and their isometric realizations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 102-111 %V 181 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/ %G ru %F INTO_2020_181_a11
I. Kh. Sabitov. Locally Euclidean metrics and their isometric realizations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 102-111. http://geodesic.mathdoc.fr/item/INTO_2020_181_a11/
[1] Borisov Yu. F., “Neregulyarnye poverkhnosti klassa $C^{1,\beta}$ s analiticheskimi metrikami”, Sib. mat. zh., 45:1 (2004), 25–61 | MR | Zbl
[2] Gromov M. L., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990
[3] Mikhalev S. N., Sabitov I. Kh., “Izometricheskie vlozheniya lokalno evklidovykh metrik v $\mathbb{R}^3$ v vide konicheskikh poverkhnostei”, Mat. zametki., 95:2 (2014), 63–73
[4] Mikhalev S. N., Sabitov I. Kh., “Izometricheskie vlozheniya v $\mathbb{R}^3$ koltsa s lokalno evklidovoi metrikoi s tsilindricheski tipom neodnoznachnosti”, Mat. zametki., 98:3 (2015), 378–385 | MR | Zbl
[5] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1968 | MR
[6] Reshetnyak Yu. G., Teoremy ustoichivosti v geometrii i analize, Nauka, Novosibirsk, 1982 | MR
[7] Sabitov I. Kh., “Izometricheskie pogruzheniya lokalno evklidovykh metrik v $\mathbb{R}^3$”, Sib. mat. zh., 26:3 (1985), 156–167 | MR | Zbl
[8] Sabitov I. Kh., “K voprosu o gladkosti izometrii”, Sib. mat. zh., 34:4 (1992), 169–176
[9] Sabitov I. Kh., “Izometricheski pogruzheniya i vlozheniya lokalno evklidovykh metrik v $\mathbb{R}^2$”, Izv. RAN. Ser. mat., 63:6 (1999), 147–166 | MR | Zbl
[10] Sabitov I. Kh., “Izometricheskie pogruzheniya i vlozheniya ploskogo lista Mebiusa v evklidovy prostranstva”, Izv. RAN. Ser. mat., 71:5 (2007), 197–224 | MR | Zbl
[11] Sabitov I. Kh., “Lokalno-evklidovye metriki s zadannoi geodezicheskoi kriviznoi kraya”, Tr. Mat. in-ta im. V. A. Steklova RAN., 266 (2009), 218–226 | Zbl
[12] Sabitov I. Kh., “O vneshnei krivizne i vneshnem stroenii $C^1$-gladkikh normalnykh razvertyvayuschikhsya poverkhnostei”, Mat. zametki., 87:6 (2010), 900–906
[13] Sabitov I. Kh., “Resheniya trivialnogo uravneniya Monzha—Ampera s izolirovannymi osobymi tochkami”, Sib. elektron. mat. izv., 13 (2016), 740–743 | Zbl
[14] Calabi E., Hartman P., “On the smoothness of isometries”, Duke Math. J., 37:4 (1970), 741–750 | DOI | MR | Zbl
[15] Delaunay N., “Sur les surfaces n'ayant qu'un côté et sur les points singuliers des courbes planes”, Bull. Soc. Math. Fr., 26 (1898), 43–52 | DOI | MR | Zbl
[16] Galvez J. A., Nelli B., “Entire solutions of the degenerate Monge–Ampere equation with a finite number of singularities”, J. Differ. Equ., 201 (2016), 6614–6631 | DOI | MR
[17] Hartman P., Nirenberg L., “On spherical image maps whose Jacobians do not change sign”, Am. J. Math., 81:4 (1959), 901–920 | DOI | MR | Zbl
[18] Klingenberg W., A Course in Differential Geometry, Springer-Verlag, New York–Heidelberg–Berlin, 1978 | MR | Zbl
[19] Sabitov I. Kh., “Isometric immersions and embeddings of locally Euclidean metrics”, Rev. Math. Math. Phys., 13:1 (2008), 1–276 | MR
[20] Schwarz G., “A pretender to the title “Canonical Möbius strip””, Pac. J. Math., 143 (1990), 195–200 | DOI | MR | Zbl
[21] Ushakov V., “Parametrization of developable surfaces by asymptotic lines”, Bull. Austr. Math. Soc., 54 (1996), 411–421 | DOI | MR | Zbl
[22] Ushakov V., “The explicit general solution of trivial Monge–Ampère equation”, Comment. Math. Helvet., 75 (2000), 125–133 | DOI | MR | Zbl