Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_181_a10, author = {V. A. Popov}, title = {Generalization of the notion of completeness of a {Riemannian} analytic manifold}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {84--101}, publisher = {mathdoc}, volume = {181}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/} }
TY - JOUR AU - V. A. Popov TI - Generalization of the notion of completeness of a Riemannian analytic manifold JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 84 EP - 101 VL - 181 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/ LA - ru ID - INTO_2020_181_a10 ER -
%0 Journal Article %A V. A. Popov %T Generalization of the notion of completeness of a Riemannian analytic manifold %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 84-101 %V 181 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/ %G ru %F INTO_2020_181_a10
V. A. Popov. Generalization of the notion of completeness of a Riemannian analytic manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 84-101. http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/
[2] Kobayasi Sh., Nomidzu K., Osnovaniya differentsialnoi geometrii. T. 1, Nauka, M., 1981 | MR
[3] Popov V. A., “Analiticheskoe prodolzhenie lokalno zadannykh rimanovykh mnogoobrazii”, Mat. zametki., 36:4 (1984), 559-–570 | MR | Zbl
[4] Popov V. A., “Prodolzhaemost lokalnykh grupp izometrii”, Mat. sb., 135 (177):1 (1988), 45-–64
[5] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964
[6] Malcev A. I., “On the theory of Lie groups in the large”, Mat. sb., 16 (5):2 (1945), 163–190 | MR | Zbl
[7] Mostow G. D., “Extensibility of Local Lie groups of transformations and groups on surfaces”, Ann. Math., 52 (1950), 606–-636 | DOI | MR | Zbl
[8] Popov V. A., “On the extendability of locally defined isometries of a pseudo-Riemannian manifolds”, J. Math. Sci., 217:5 (2016), 624–627 | DOI | MR | Zbl
[9] Popov V. A., “On Closeness of Stationary Subgroup of Affine Transformation Groups”, Lobachevskii J. Math., 38:4 (2017), 724-–729 | DOI | MR | Zbl