Generalization of the notion of completeness of a Riemannian analytic manifold
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 84-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the concept of an analytic continuation of a local Riemannian metric. We propose a generalization of the notion of completeness realized as an analytic continuation of an arbitrary Riemannian metric. Various Riemannian metrics are studied, primarily those related to the structure of the Lie algebra $\mathfrak{g}$ of all Killing vector fields for a local metric. We introduce the notion of a quasicomplete manifold, which possesses the property of extendability of all local isometries to isometries of the whole manifold. A classification of pseudocomplete manifolds of small dimensions is obtained. We present conditions for the Lie algebra of all Killing vector fields $\mathfrak{g}$ and its stationary subalgebra $\mathfrak{h}$ of a locally homogeneous pseudo-Riemannian manifold under which a locally homogeneous manifold can be analytically extended to a homogeneous manifold.
Keywords: Riemannian manifold, pseudo-Riemannian manifold, Lie algebra, analytic continuation, vector field, closed subgroup.
Mots-clés : Lie group
@article{INTO_2020_181_a10,
     author = {V. A. Popov},
     title = {Generalization of the notion of completeness of a {Riemannian} analytic manifold},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--101},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/}
}
TY  - JOUR
AU  - V. A. Popov
TI  - Generalization of the notion of completeness of a Riemannian analytic manifold
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 84
EP  - 101
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/
LA  - ru
ID  - INTO_2020_181_a10
ER  - 
%0 Journal Article
%A V. A. Popov
%T Generalization of the notion of completeness of a Riemannian analytic manifold
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 84-101
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/
%G ru
%F INTO_2020_181_a10
V. A. Popov. Generalization of the notion of completeness of a Riemannian analytic manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 84-101. http://geodesic.mathdoc.fr/item/INTO_2020_181_a10/

[2] Kobayasi Sh., Nomidzu K., Osnovaniya differentsialnoi geometrii. T. 1, Nauka, M., 1981 | MR

[3] Popov V. A., “Analiticheskoe prodolzhenie lokalno zadannykh rimanovykh mnogoobrazii”, Mat. zametki., 36:4 (1984), 559-–570 | MR | Zbl

[4] Popov V. A., “Prodolzhaemost lokalnykh grupp izometrii”, Mat. sb., 135 (177):1 (1988), 45-–64

[5] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[6] Malcev A. I., “On the theory of Lie groups in the large”, Mat. sb., 16 (5):2 (1945), 163–190 | MR | Zbl

[7] Mostow G. D., “Extensibility of Local Lie groups of transformations and groups on surfaces”, Ann. Math., 52 (1950), 606–-636 | DOI | MR | Zbl

[8] Popov V. A., “On the extendability of locally defined isometries of a pseudo-Riemannian manifolds”, J. Math. Sci., 217:5 (2016), 624–627 | DOI | MR | Zbl

[9] Popov V. A., “On Closeness of Stationary Subgroup of Affine Transformation Groups”, Lobachevskii J. Math., 38:4 (2017), 724-–729 | DOI | MR | Zbl