Conditions for the parallelism of the normal curvature tensor of submanifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, sufficient conditions for the parallelism of the normal curvature tensor of submanifolds in spaces of constant curvature are obtained.
Keywords: submanifold, space of constant curvature, second fundamental form, normal curvature tensor, normal curvature vector
Mots-clés : normal torsion vector.
@article{INTO_2020_181_a0,
     author = {I. I. Bodrenko},
     title = {Conditions for the parallelism of the normal curvature tensor of submanifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/}
}
TY  - JOUR
AU  - I. I. Bodrenko
TI  - Conditions for the parallelism of the normal curvature tensor of submanifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 3
EP  - 8
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/
LA  - ru
ID  - INTO_2020_181_a0
ER  - 
%0 Journal Article
%A I. I. Bodrenko
%T Conditions for the parallelism of the normal curvature tensor of submanifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 3-8
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/
%G ru
%F INTO_2020_181_a0
I. I. Bodrenko. Conditions for the parallelism of the normal curvature tensor of submanifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 3-8. http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/

[1] Bodrenko I. I., “Nekotorye svoistva kelerovykh podmnogoobrazii s rekurrentnymi tenzornymi polyami”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 10:1 (2006), 11–21

[2] Bodrenko I. I., “O giperpoverkhnostyakh s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovom prostranstve”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 13 (2010), 23–35

[3] Bodrenko I. I., “O podmnogoobraziyakh s nulevym vektorom normalnogo krucheniya v prostranstvakh postoyannoi krivizny”, Lomonosovskie chteniya na Altae, Barnaul, 2015, 461–465

[4] Bodrenko I. I., “O podmnogoobraziyakh s nulevym normalnym krucheniem v evklidovom prostranstve”, Sib. mat. zh., 35:3 (1994), 527–536 | MR | Zbl

[5] Bodrenko I. I., “O podmnogoobraziyakh s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovykh prostranstvakh”, Obozr. prikl. prom. mat., 18:5 (2011), 746

[6] Bodrenko I. I., “Ob analoge poverkhnostei Darbu v mnogomernykh evklidovykh prostranstvakh”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 2013, no. 1 (18), 24–30

[7] Bodrenko I. I., “Obobschenie teoremy Bonne o poverkhnostyakh Darbu”, Mat. zametki., 95:6 (2014), 812–820 | MR | Zbl

[8] Bodrenko I. I., Obobschennye poverkhnosti Darbu v prostranstvakh postoyannoi krivizny, LAP LAMBERT, Saarbrücken, 2013

[9] Bodrenko I. I., “Podmnogoobraziya s rekurrentnoi vtoroi fundamentalnoi formoi v prostranstvakh postoyannoi krivizny”, Obozr. prikl. prom. mat., 14:4 (2007), 679–682

[10] Bodrenko I. I., “Stroenie podmnogoobrazii s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovom prostranstve”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 2011, no. 1 (14), 10–17

[11] Bodrenko I. I., “Kharakteristicheskii priznak poverkhnostei s postoyannym gaussovym krucheniem v $E^4$”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 2013, no. 2 (19), 13–17 | MR

[12] Fomenko V. T., “Klassifikatsiya dvumernykh poverkhnostei s nulevym normalnym krucheniem v chetyrekhmernom prostranstve postoyannoi krivizny”, Mat. zametki., 75:5 (2004), 744–756 | MR | Zbl

[13] Fomenko V. T., “Nekotorye svoistva dvumernykh poverkhnostei s nulevym normalnym krucheniem v $E^4$”, Mat. sb., 106 (148):4 (8) (1978), 589–603 | MR | Zbl

[14] Fomenko V. T., “Ob odnom obobschenii poverkhnostei Darbu”, Mat. zametki., 48:2 (1990), 107–113