Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_181_a0, author = {I. I. Bodrenko}, title = {Conditions for the parallelism of the normal curvature tensor of submanifolds}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--8}, publisher = {mathdoc}, volume = {181}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/} }
TY - JOUR AU - I. I. Bodrenko TI - Conditions for the parallelism of the normal curvature tensor of submanifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 3 EP - 8 VL - 181 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/ LA - ru ID - INTO_2020_181_a0 ER -
%0 Journal Article %A I. I. Bodrenko %T Conditions for the parallelism of the normal curvature tensor of submanifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 3-8 %V 181 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/ %G ru %F INTO_2020_181_a0
I. I. Bodrenko. Conditions for the parallelism of the normal curvature tensor of submanifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 3-8. http://geodesic.mathdoc.fr/item/INTO_2020_181_a0/
[1] Bodrenko I. I., “Nekotorye svoistva kelerovykh podmnogoobrazii s rekurrentnymi tenzornymi polyami”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 10:1 (2006), 11–21
[2] Bodrenko I. I., “O giperpoverkhnostyakh s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovom prostranstve”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 13 (2010), 23–35
[3] Bodrenko I. I., “O podmnogoobraziyakh s nulevym vektorom normalnogo krucheniya v prostranstvakh postoyannoi krivizny”, Lomonosovskie chteniya na Altae, Barnaul, 2015, 461–465
[4] Bodrenko I. I., “O podmnogoobraziyakh s nulevym normalnym krucheniem v evklidovom prostranstve”, Sib. mat. zh., 35:3 (1994), 527–536 | MR | Zbl
[5] Bodrenko I. I., “O podmnogoobraziyakh s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovykh prostranstvakh”, Obozr. prikl. prom. mat., 18:5 (2011), 746
[6] Bodrenko I. I., “Ob analoge poverkhnostei Darbu v mnogomernykh evklidovykh prostranstvakh”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 2013, no. 1 (18), 24–30
[7] Bodrenko I. I., “Obobschenie teoremy Bonne o poverkhnostyakh Darbu”, Mat. zametki., 95:6 (2014), 812–820 | MR | Zbl
[8] Bodrenko I. I., Obobschennye poverkhnosti Darbu v prostranstvakh postoyannoi krivizny, LAP LAMBERT, Saarbrücken, 2013
[9] Bodrenko I. I., “Podmnogoobraziya s rekurrentnoi vtoroi fundamentalnoi formoi v prostranstvakh postoyannoi krivizny”, Obozr. prikl. prom. mat., 14:4 (2007), 679–682
[10] Bodrenko I. I., “Stroenie podmnogoobrazii s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovom prostranstve”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 2011, no. 1 (14), 10–17
[11] Bodrenko I. I., “Kharakteristicheskii priznak poverkhnostei s postoyannym gaussovym krucheniem v $E^4$”, Vestn. Volgograd. un-ta. Ser. 1. Mat. Fiz., 2013, no. 2 (19), 13–17 | MR
[12] Fomenko V. T., “Klassifikatsiya dvumernykh poverkhnostei s nulevym normalnym krucheniem v chetyrekhmernom prostranstve postoyannoi krivizny”, Mat. zametki., 75:5 (2004), 744–756 | MR | Zbl
[13] Fomenko V. T., “Nekotorye svoistva dvumernykh poverkhnostei s nulevym normalnym krucheniem v $E^4$”, Mat. sb., 106 (148):4 (8) (1978), 589–603 | MR | Zbl
[14] Fomenko V. T., “Ob odnom obobschenii poverkhnostei Darbu”, Mat. zametki., 48:2 (1990), 107–113